def default_mapper(sample): img, label = sample img = image.simple_transform(img, 256, 224, True, mean=[103.94, 116.78, 123.68]) return img.flatten().astype('float32'), label
def load_data(file): img = load_image(file) img = simple_transform(img, 256, 224, is_train=False, mean=[103.94, 116.78, 123.68]) img = img.astype('float32') img = np.expand_dims(img, axis=0) return img
def default_mapper(is_train, sample): ''' map image bytes data to type needed by model input layer ''' img, label = sample img = load_image_bytes(img) img = simple_transform(img, 256, 224, is_train, mean=[103.94, 116.78, 123.68]) return img.flatten().astype('float32'), label