Пример #1
0
 def test_inverse_log_det_jacobian(self, input):
     exe = paddle.static.Executor()
     sp = paddle.static.Program()
     mp = paddle.static.Program()
     with paddle.static.program_guard(mp, sp):
         t = transform.ExpTransform()
         static_input = paddle.static.data('input', input.shape,
                                           input.dtype)
         output = t.inverse_log_det_jacobian(static_input)
     exe.run(sp)
     [output] = exe.run(mp, feed={'input': input}, fetch_list=[output])
     np.testing.assert_allclose(output,
                                self._np_inverse_jacobian(input),
                                rtol=config.RTOL.get(str(input.dtype)),
                                atol=config.ATOL.get(str(input.dtype)))
Пример #2
0
class TestChainTransform(unittest.TestCase):
    @param.param_func([(paddle.distribution.Transform, TypeError),
                       ([0], TypeError)])
    def test_init_exception(self, transforms, exception):
        with self.assertRaises(exception):
            paddle.distribution.ChainTransform(transforms)

    @param.param_func(((transform.ChainTransform(
        (transform.AbsTransform(),
         transform.AffineTransform(paddle.rand([1]), paddle.rand([1])))),
                        False), (transform.ChainTransform((
                            transform.AffineTransform(paddle.rand([1]),
                                                      paddle.rand([1])),
                            transform.ExpTransform(),
                        )), True)))
    def test_is_injective(self, chain, expected):
        self.assertEqual(chain._is_injective(), expected)

    @param.param_func(((transform.ChainTransform(
        (transform.IndependentTransform(transform.ExpTransform(), 1),
         transform.IndependentTransform(transform.ExpTransform(), 10),
         transform.IndependentTransform(transform.ExpTransform(), 8))),
                        variable.Independent(variable.real, 10)), ))
    def test_domain(self, input, expected):
        self.assertIsInstance(input._domain, type(expected))
        self.assertEqual(input._domain.event_rank, expected.event_rank)
        self.assertEqual(input._domain.is_discrete, expected.is_discrete)

    @param.param_func(((transform.ChainTransform(
        (transform.IndependentTransform(transform.ExpTransform(), 9),
         transform.IndependentTransform(transform.ExpTransform(), 4),
         transform.IndependentTransform(transform.ExpTransform(), 5))),
                        variable.Independent(variable.real, 9)), ))
    def test_codomain(self, input, expected):
        self.assertIsInstance(input._codomain, variable.Independent)
        self.assertEqual(input._codomain.event_rank, expected.event_rank)
        self.assertEqual(input._codomain.is_discrete, expected.is_discrete)

    @param.param_func([
        (transform.ChainTransform(
            (transform.AffineTransform(paddle.to_tensor(0.0),
                                       paddle.to_tensor(1.0)),
             transform.ExpTransform())), np.array([0., 1., 2., 3.]),
         np.exp(np.array([0., 1., 2., 3.]) * 1.0)),
        (transform.ChainTransform(
            (transform.ExpTransform(), transform.TanhTransform())),
         np.array([[0., -1., 2., -3.], [-5., 6., 7., -8.]]),
         np.tanh(np.exp(np.array([[0., -1., 2., -3.], [-5., 6., 7., -8.]]))))
    ])
    def test_forward(self, chain, input, expected):
        np.testing.assert_allclose(chain.forward(
            paddle.to_tensor(input)).numpy(),
                                   expected,
                                   rtol=config.RTOL.get(str(input.dtype)),
                                   atol=config.ATOL.get(str(input.dtype)))

    @param.param_func([
        (transform.ChainTransform(
            (transform.AffineTransform(paddle.to_tensor(0.0),
                                       paddle.to_tensor(-1.0)),
             transform.ExpTransform())), np.array([0., 1., 2., 3.]),
         np.log(np.array([0., 1., 2., 3.])) / (-1.0)),
        (transform.ChainTransform(
            (transform.ExpTransform(), transform.TanhTransform())),
         np.array([[0., 1., 2., 3.], [5., 6., 7., 8.]]),
         np.log(np.arctanh(np.array([[0., 1., 2., 3.], [5., 6., 7., 8.]]))))
    ])
    def test_inverse(self, chain, input, expected):
        np.testing.assert_allclose(chain.inverse(
            paddle.to_tensor(input)).numpy(),
                                   expected,
                                   rtol=config.RTOL.get(str(input.dtype)),
                                   atol=config.ATOL.get(str(input.dtype)))

    @param.param_func([
        (transform.ChainTransform(
            (transform.AffineTransform(paddle.to_tensor(0.0),
                                       paddle.to_tensor(-1.0)),
             transform.PowerTransform(paddle.to_tensor(2.0)))),
         np.array([1., 2., 3.]), np.log(2. * np.array([1., 2., 3.]))),
    ])
    def test_forward_log_det_jacobian(self, chain, input, expected):
        np.testing.assert_allclose(chain.forward_log_det_jacobian(
            paddle.to_tensor(input)).numpy(),
                                   expected,
                                   rtol=config.RTOL.get(str(input.dtype)),
                                   atol=config.ATOL.get(str(input.dtype)))

    @param.param_func([
        (transform.ChainTransform(
            (transform.AffineTransform(paddle.to_tensor(0.0),
                                       paddle.to_tensor(-1.0)),
             transform.ExpTransform())), (2, 3, 5), (2, 3, 5)),
    ])
    def test_forward_shape(self, chain, shape, expected_shape):
        self.assertEqual(chain.forward_shape(shape), expected_shape)

    @param.param_func([
        (transform.ChainTransform(
            (transform.AffineTransform(paddle.to_tensor(0.0),
                                       paddle.to_tensor(-1.0)),
             transform.ExpTransform())), (2, 3, 5), (2, 3, 5)),
    ])
    def test_inverse_shape(self, chain, shape, expected_shape):
        self.assertEqual(chain.inverse_shape(shape), expected_shape)
Пример #3
0
 def setUp(self):
     self._t = transform.ExpTransform()
Пример #4
0
        self.assertEqual(chain.forward_shape(shape), expected_shape)

    @param.param_func([
        (transform.ChainTransform(
            (transform.AffineTransform(paddle.to_tensor(0.0),
                                       paddle.to_tensor(-1.0)),
             transform.ExpTransform())), (2, 3, 5), (2, 3, 5)),
    ])
    def test_inverse_shape(self, chain, shape, expected_shape):
        self.assertEqual(chain.inverse_shape(shape), expected_shape)


@param.place(config.DEVICES)
@param.param_cls(
    (param.TEST_CASE_NAME, 'base', 'reinterpreted_batch_rank', 'x'), [
        ('rank-over-zero', transform.ExpTransform(), 2, np.random.rand(
            2, 3, 3)),
    ])
class TestIndependentTransform(unittest.TestCase):
    def setUp(self):
        self._t = transform.IndependentTransform(self.base,
                                                 self.reinterpreted_batch_rank)

    @param.param_func([(0, 0, TypeError),
                       (paddle.distribution.Transform(), -1, ValueError)])
    def test_init_exception(self, base, rank, exc):
        with self.assertRaises(exc):
            paddle.distribution.IndependentTransform(base, rank)

    def test_is_injective(self):
        self.assertEqual(self._t._is_injective(), self.base._is_injective())
Пример #5
0
class TestChainTransform(unittest.TestCase):
    @param.param_func(((transform.ChainTransform(
        (transform.AbsTransform(),
         transform.AffineTransform(paddle.rand([1]), paddle.rand([1])))),
                        False), (transform.ChainTransform((
                            transform.AffineTransform(paddle.rand([1]),
                                                      paddle.rand([1])),
                            transform.ExpTransform(),
                        )), True)))
    def test_is_injective(self, chain, expected):
        self.assertEqual(chain._is_injective(), expected)

    @param.param_func(((transform.ChainTransform(
        (transform.IndependentTransform(transform.ExpTransform(), 1),
         transform.IndependentTransform(transform.ExpTransform(), 10),
         transform.IndependentTransform(transform.ExpTransform(), 8))),
                        variable.Independent(variable.real, 10)), ))
    def test_domain(self, input, expected):
        self.assertIsInstance(input._domain, type(expected))
        self.assertEqual(input._domain.event_rank, expected.event_rank)
        self.assertEqual(input._domain.is_discrete, expected.is_discrete)

    @param.param_func(((transform.ChainTransform(
        (transform.IndependentTransform(transform.ExpTransform(), 9),
         transform.IndependentTransform(transform.ExpTransform(), 4),
         transform.IndependentTransform(transform.ExpTransform(), 5))),
                        variable.Independent(variable.real, 9)), ))
    def test_codomain(self, input, expected):
        self.assertIsInstance(input._codomain, variable.Independent)
        self.assertEqual(input._codomain.event_rank, expected.event_rank)
        self.assertEqual(input._codomain.is_discrete, expected.is_discrete)

    @param.param_func([
        (transform.ChainTransform(
            (transform.ExpTransform(), transform.TanhTransform())),
         np.array([[0., -1., 2., -3.], [-5., 6., 7., -8.]]),
         np.tanh(np.exp(np.array([[0., -1., 2., -3.], [-5., 6., 7., -8.]]))))
    ])
    def test_forward(self, chain, input, expected):
        exe = paddle.static.Executor()
        sp = paddle.static.Program()
        mp = paddle.static.Program()
        with paddle.static.program_guard(mp, sp):
            t = chain
            static_input = paddle.static.data('input', input.shape,
                                              input.dtype)
            output = t.forward(static_input)
        exe.run(sp)
        [output] = exe.run(mp, feed={'input': input}, fetch_list=[output])
        np.testing.assert_allclose(output,
                                   expected,
                                   rtol=config.RTOL.get(str(input.dtype)),
                                   atol=config.ATOL.get(str(input.dtype)))

    @param.param_func([
        (transform.ChainTransform(
            (transform.ExpTransform(), transform.TanhTransform())),
         np.array([[0., 1., 2., 3.], [5., 6., 7., 8.]]),
         np.log(np.arctanh(np.array([[0., 1., 2., 3.], [5., 6., 7., 8.]]))))
    ])
    def test_inverse(self, chain, input, expected):
        exe = paddle.static.Executor()
        sp = paddle.static.Program()
        mp = paddle.static.Program()
        with paddle.static.program_guard(mp, sp):
            t = chain
            static_input = paddle.static.data('input', input.shape,
                                              input.dtype)
            output = t.inverse(static_input)
        exe.run(sp)
        [output] = exe.run(mp, feed={'input': input}, fetch_list=[output])
        np.testing.assert_allclose(output,
                                   expected,
                                   rtol=config.RTOL.get(str(input.dtype)),
                                   atol=config.ATOL.get(str(input.dtype)))

    @param.param_func([
        (transform.ChainTransform(
            (transform.AffineTransform(paddle.full([1], 0.0),
                                       paddle.full([1], -1.0)),
             transform.ExpTransform())), (2, 3, 5), (2, 3, 5)),
    ])
    def test_forward_shape(self, chain, shape, expected_shape):
        self.assertEqual(chain.forward_shape(shape), expected_shape)

    @param.param_func([
        (transform.ChainTransform(
            (transform.AffineTransform(paddle.full([1], 0.0),
                                       paddle.full([1], -1.0)),
             transform.ExpTransform())), (2, 3, 5), (2, 3, 5)),
    ])
    def test_inverse_shape(self, chain, shape, expected_shape):
        self.assertEqual(chain.forward_shape(shape), expected_shape)
Пример #6
0
        self.assertEqual(chain.forward_shape(shape), expected_shape)

    @param.param_func([
        (transform.ChainTransform(
            (transform.AffineTransform(paddle.full([1], 0.0),
                                       paddle.full([1], -1.0)),
             transform.ExpTransform())), (2, 3, 5), (2, 3, 5)),
    ])
    def test_inverse_shape(self, chain, shape, expected_shape):
        self.assertEqual(chain.forward_shape(shape), expected_shape)


@param.place(config.DEVICES)
@param.param_cls(
    (param.TEST_CASE_NAME, 'base', 'reinterpreted_batch_rank', 'x'), [
        ('rank-over-zero', transform.ExpTransform(), 2, np.random.rand(
            2, 3, 3)),
    ])
class TestIndependentTransform(unittest.TestCase):
    def setUp(self):
        self._t = transform.IndependentTransform(self.base,
                                                 self.reinterpreted_batch_rank)

    def test_is_injective(self):
        self.assertEqual(self._t._is_injective(), self.base._is_injective())

    def test_domain(self):
        self.assertTrue(isinstance(self._t._domain, variable.Independent))
        self.assertEqual(
            self._t._domain.event_rank,
            self.base._domain.event_rank + self.reinterpreted_batch_rank)