def test_communicator_init_and_start(self): role = role_maker.UserDefinedRoleMaker( current_id=0, role=role_maker.Role.WORKER, worker_num=2, server_endpoints=["127.0.0.1:6001", "127.0.0.1:6002"]) fleet.init(role) avg_cost = self.net() optimizer = fluid.optimizer.SGD(0.01) strategy = DistributeTranspilerConfig() strategy.sync_mode = True strategy.wait_port = False optimizer = fleet.distributed_optimizer(optimizer, strategy) optimizer.minimize(avg_cost) comm = Communicator(fleet.main_program) comm.start() time.sleep(10) comm.stop()
def test_communicator_init_and_start(self): prog = fluid.Program() comm = Communicator(prog) comm.start() comm.stop()
class DistributedTranspiler(Fleet): """ A subclass for compatibility with fluid.transpiler.DistributeTranspiler. """ def __init__(self): super(DistributedTranspiler, self).__init__(Mode.TRANSPILER) self._transpile_config = None self._transpiler = None self._origin_program = None self.startup_program = None self.main_program = None self._communicator = None def init_worker(self): """ `init_worker` has many many functions to do before training, first, wait for all parameter servers launch completely. second, run executor to initialize startup program third, wait for all worker initialize completely. Returns: None """ # if MPISymetricRoleMaker is defined # we suppose a user wants to submit job on mpi cluster if isinstance(self._role_maker, MPISymetricRoleMaker): # check whether server has been initialized from paddle.fluid.transpiler.details.checkport import wait_server_ready wait_server_ready(fleet.server_endpoints(to_string=False)) if not self._transpile_config.sync_mode: self._communicator = Communicator(self.main_program) if not self._communicator.is_running(): self._communicator.start() else: warnings.warn("communicator has been initialized, skip") def init_server(self, model_dir=None): """ `init_server` has many many functions to do before start pserver, first, run executor to initialize startup program, second, if the `model_dir` is not empty, it will load parameters from it for increment training. Args: model_dir(str): The directory path. Returns: None """ if not self.startup_program: raise ValueError( "startup_program is None, need invoke DistributedOptimizer.minimize first" ) self._executor.run(self.startup_program) if model_dir: if not os.path.isdir(model_dir): raise ValueError("There is no directory named '%s'", model_dir) io.load_persistables(self._executor, model_dir, self.main_program) def run_server(self): """ `run_server` execute executor to start pserver main program. Returns: None """ if not self.main_program: raise ValueError( "main_program is None, need invoke DistributedOptimizer.minimize first" ) self._executor.run(self.main_program) def stop_worker(self): """ Close this executor. For the distributed training, this method would free the resource on PServers related to the current Trainer. Returns: None """ if not self._transpile_config.sync_mode and self._communicator.is_running( ): self._communicator.stop() self._executor.close() if isinstance(self._role_maker, MPISymetricRoleMaker): self._role_maker._finalize() def distributed_optimizer(self, optimizer, strategy=None): """ Optimizer for distributed training. For the distributed training, this method would rebuild a new instance of DistributedOptimizer. Which has basic Optimizer function and special features for distributed training. Args: optimizer(Optimizer): The executor to run for init server. strategy(DistributeTranspilerConfig): Extra properties for distributed optimizer. Returns: TranspilerOptimizer: subclass of DistributedOptimizer. """ if not isinstance(optimizer, Optimizer): raise ValueError("optimizer must be an instance of Optimizer") self._optimizer = TranspilerOptimizer(optimizer, strategy) return self._optimizer def save_inference_model(self, executor, dirname, feeded_var_names, target_vars, main_program=None, export_for_deployment=True): """ Prune the given `main_program` to build a new program especially for inference, and then save it and all related parameters to given `dirname` by the `executor`. """ if isinstance(executor, ParallelExecutor): raise TypeError( "in fleet.save_inference_model() function, executor must be as Executor type, ParallelExecutor is not allowed" ) if not isinstance(executor, Executor): raise TypeError( "in fleet.save_inference_model() function, executor must be as Executor type" ) if main_program is not None: if isinstance(main_program, CompiledProgram): raise TypeError( "in fleet.save_inference_model() function, main_program must be as Program type, CompiledProgram is not allowed" ) io.save_inference_model(dirname, feeded_var_names, target_vars, executor, main_program, None, None, export_for_deployment) else: io.save_inference_model(dirname, feeded_var_names, target_vars, executor, self._origin_program, None, None, export_for_deployment, True) model_basename = "__model__" model_filename = os.path.join(dirname, model_basename) with open(model_filename, "rb") as f: program_desc_str = f.read() program = Program.parse_from_string(program_desc_str) program._copy_dist_param_info_from(self.main_program) self.save_persistables(executor, dirname, program) def save_persistables(self, executor, dirname, main_program=None): """ This function filters out all variables with `persistable==True` from the give `main_program` and then saves these variables to the folder `dirname` or file `filename`. The `dirname` is used to specify the folder where persistable variables are going to be saved. If you would like to save variables in separate files, set `filename` None; if you would like to save all variables in a single file, use `filename` to specify the file name. """ if isinstance(executor, ParallelExecutor): raise TypeError( "in fleet.save_persistables() function, executor must be as Executor type, ParallelExecutor is not allowed" ) if not isinstance(executor, Executor): raise TypeError( "in fleet.save_persistables() function, executor must be as Executor type" ) if main_program is None: main_program = self.main_program if isinstance(main_program, CompiledProgram): raise TypeError( "in fleet.save_persistables() function, main_program must be as Program type, CompiledProgram is not allowed" ) if not main_program._is_distributed: raise ValueError( "main_program is for local, may not use fleet.save_persistables" ) io.save_persistables(executor, dirname, main_program, None) def _transpile(self, config): if not isinstance(config, DistributeTranspilerConfig): raise TypeError( "config must be an instance of DistributeTranspilerConfig") if not config.sync_mode: config.runtime_split_send_recv = True # _origin_program is a deep copy for default_main_program, for inference self._origin_program = default_main_program().clone(for_test=False) self._transpile_config = config self._transpiler = OriginTranspiler(config) if self.is_worker(): self._transpiler.transpile( trainer_id=fleet.worker_index(), pservers=fleet.server_endpoints(to_string=True), trainers=fleet.worker_num(), sync_mode=config.sync_mode) if isinstance(self._role_maker, MPISymetricRoleMaker): config.wait_port = False self.main_program = self._transpiler.get_trainer_program( wait_port=config.wait_port) self.startup_program = default_startup_program() else: self._transpiler.transpile( trainer_id=fleet.worker_index(), pservers=fleet.server_endpoints(to_string=True), trainers=fleet.worker_num(), sync_mode=config.sync_mode, current_endpoint=self.server_endpoints()[self.server_index()]) self.main_program, self.startup_program = \ self._transpiler.get_pserver_programs(self.server_endpoints()[self.server_index()])
class TheOnePSRuntime(RuntimeBase): def __init__(self): super(TheOnePSRuntime, self).__init__() self._communicator = None self._server = None self._worker = fluid.core.DistFleetWrapper() self._server_sub_program = [] self._heter_client = None def _set_basic_info(self, context): self.context = context self.role_maker = context["role_maker"] self.origin_main_program = context["origin_main_program"] self.origin_startup_program = context["origin_startup_program"] self.async_strategy = self._get_distributed_strategy() self.compiled_strategy = self.build_compiled_startegy() def _get_distributed_strategy(self): strategy = None from paddle.fluid.incubate.fleet.parameter_server.distribute_transpiler.distributed_strategy import \ StrategyFactory dist_strategy = self.context["valid_strategy"] k_steps = dist_strategy.a_sync_configs["k_steps"] if not dist_strategy.a_sync and k_steps == 0: strategy = StrategyFactory.create_sync_strategy() if dist_strategy.a_sync and k_steps == 0: strategy = StrategyFactory.create_async_strategy() if dist_strategy.a_sync and k_steps > 0: strategy = StrategyFactory.create_geo_strategy(k_steps) if not strategy: raise ValueError("k_steps must be invalid value, please check") return strategy def build_compiled_startegy(self): from paddle.fluid.incubate.fleet.parameter_server.ir.public import CompileTimeStrategy compiled_config = CompileTimeStrategy(self.origin_main_program, self.origin_main_program, self.async_strategy, self.role_maker) return compiled_config def _init_worker(self): from paddle.fluid.incubate.fleet.parameter_server.distribute_transpiler.distributed_strategy import \ SyncStrategy, GeoStrategy is_sync = self.compiled_strategy.is_sync_mode() worker = self._get_fleet_proto(is_server=False, is_sync=is_sync) server = self._get_fleet_proto(is_server=True, is_sync=is_sync) def sync_strategy_envs(): kwargs = {} kwargs[ "pserver_endpoints"] = self.role_maker._get_pserver_endpoints( ) kwargs["trainer_id"] = self.role_maker._worker_index() return kwargs proto_txt = str(worker) + "\n" + str(server) debug = bool(int(os.getenv("PSERVER_DEBUG", "0"))) if debug: print("worker: \n{}".format(proto_txt)) endpoints = self.compiled_strategy.get_ps_endpoints() string_hosts = [] for idx, ep in enumerate(endpoints): host, port = ep.split(":") pshost = fluid.core.PSHost(host, int(port), idx) string_hosts.append(pshost.serialize_to_string()) dense_map = self.compiled_strategy.get_the_one_recv_context( split_dense_table=self.role_maker._is_heter_parameter_server_mode) send_ctx = self.compiled_strategy.get_the_one_send_context( split_dense_table=self.role_maker._is_heter_parameter_server_mode, ep_list=endpoints) trainer_config = self.async_strategy.get_trainer_runtime_config() debug = bool(int(os.getenv("PSERVER_DEBUG", "0"))) if debug: print("worker: \n{}".format(proto_txt)) print("communicator send_ctx:") for key in send_ctx: print("{}: {}".format(key, send_ctx[key])) for key in dense_map: print("{}: {}".format(key, dense_map[key])) kwargs = {} kwargs['need_global_step'] = "0" kwargs["trainer_id"] = self.role_maker._role_id() kwargs["trainers"] = self.role_maker._worker_num() if self.role_maker._is_heter_worker(): kwargs["trainer_id"] += kwargs["trainers"] for table in server.servers[0].tables: if table.table_class == "BarrierTable": kwargs["barrier_table_id"] = table.id break if isinstance(self.async_strategy, SyncStrategy): sync_kwargs = sync_strategy_envs() kwargs.update(sync_kwargs) from paddle.fluid.communicator import Communicator, HeterClient self._communicator = Communicator( trainer_config.mode, kwargs, trainer_config.get_communicator_flags()) self._communicator.init_with_ctx(send_ctx, dense_map, proto_txt, string_hosts, fluid.global_scope()) dist_strategy = self.context["valid_strategy"] is_test = bool(int(os.getenv("TEST_MODE", "0"))) if self.role_maker._is_first_worker( ) and self.role_maker._is_heter_parameter_server_mode: # for ps-heter mode load all parameters on first_worker init_params = self.compiled_strategy.get_the_one_recv_context( split_dense_table=True, use_origin_program=True) else: init_params = dense_map if not is_test: self._communicator.init_params(init_params) if not self._communicator.is_running(): self._communicator.start() else: warnings.warn("communicator has been initialized, skip") launch_barrier = dist_strategy.a_sync_configs["launch_barrier"] launch_barrier_flag = int(os.getenv("FLAGS_LAUNCH_BARRIER", "1")) if launch_barrier and launch_barrier_flag: # for trainer wait server ready wait_server_ready(self.role_maker._get_pserver_endpoints()) # for ps-heter mode, wait heter worker ready if self.role_maker._is_heter_parameter_server_mode and self.role_maker._is_worker( ): wait_server_ready( self.role_maker._get_heter_worker_endpoints()) self._heter_client = HeterClient( self.role_maker._get_heter_worker_endpoints(), self.role_maker._role_id()) def _push_sparse_param(self, var_name, table_id=-1, scope=fluid.global_scope()): self._communicator.push_sparse_param(var_name, table_id, scope) def _get_executor(self): executor = fluid.Executor(fluid.CPUPlace()) if self.role_maker._is_heter_parameter_server_mode: heter_worker_device_guard = self.context[ "valid_strategy"].a_sync_configs[ "heter_worker_device_guard"].upper() if heter_worker_device_guard not in ["GPU", "XPU", "CPU"]: raise ValueError("Heter Worker Not Support Device {}".format( heter_worker_device_guard)) if self.role_maker._is_heter_worker(): if heter_worker_device_guard == "GPU": executor = Executor( fluid.CUDAPlace( int(os.getenv("FLAGS_selected_gpus", "0")))) elif heter_worker_device_guard == "XPU": executor = Executor( fluid.XPUPlace( int(os.getenv("FLAGS_selected_xpus", "0")))) return executor def _get_fleet_proto(self, is_server, is_sync): def _build_merge_accessor(ctx): accessor = Accessor() accessor.accessor_class = "CommMergeAccessor" accessor.optimizer = None if ctx.is_sparse(): accessor.feature_dim = ctx.sections()[0] accessor.embedding_dim = ctx.sections()[1] else: accessor.feature_dim = ctx.sections()[0] accessor.embedding_dim = 1 return accessor def _build_barrier_table(idx): table = Table() table.id = idx table.type = "PS_OTHER_TABLE" table.table_class = "BarrierTable" table.shard_num = 256 accessor = Accessor() accessor.accessor_class = "CommMergeAccessor" accessor.optimizer = None accessor.feature_dim = 0 accessor.embedding_dim = 0 table.accessor = accessor common = CommonAccessor() common.table_name = "barrier_table" trainer_num = self.compiled_strategy.get_trainers() if self.role_maker._is_heter_parameter_server_mode: trainer_num += len( self.role_maker._get_heter_worker_endpoints()) common.trainer_num = trainer_num common.attrs = "" common.dims = [] common.params = [] table.common = common return table def _build_tensor_table(idx, tensor_dict): table = Table() table.id = idx table.type = "PS_OTHER_TABLE" table.table_class = tensor_dict["tensor_table_class"] table.shard_num = 256 accessor = Accessor() accessor.accessor_class = "CommMergeAccessor" accessor.optimizer = None accessor.feature_dim = 0 accessor.embedding_dim = 0 table.accessor = accessor common = CommonAccessor() common.table_name = tensor_dict["feed_var_name"] common.trainer_num = self.compiled_strategy.get_trainers() common.attrs = "" common.dims = [] common.params = [] table.common = common tensor = Tensor() tensor.main_program_id = tensor_dict["main_program_id"] tensor.startup_program_id = tensor_dict["startup_program_id"] tensor.feed_var_name = tensor_dict["feed_var_name"] tensor.fetch_var_name = tensor_dict["fetch_var_name"] tensor.tensor_table_class = tensor_dict["tensor_table_class"] table.tensor = tensor return table def _add_tensor_table(tables): tensor_table_dict = self.compiled_strategy.get_tensor_table_dict() program_idx = 0 for table_name in tensor_table_dict: if tensor_table_dict[table_name]["startup_program"] != None: tensor_table_dict[table_name][ "startup_program_id"] = program_idx self._server_sub_program.append( tensor_table_dict[table_name]["startup_program"].desc) program_idx += 1 if tensor_table_dict[table_name]["main_program"] != None: tensor_table_dict[table_name][ "main_program_id"] = program_idx self._server_sub_program.append( tensor_table_dict[table_name]["main_program"].desc) program_idx += 1 # Todo: Hard code for lr_decay table apply table id new_table = _build_tensor_table(len(tables), tensor_table_dict[table_name]) tables.append(new_table) return tables def _get_tables(): send_ctx = self.compiled_strategy.get_the_one_send_context( use_origin_program=True, split_dense_table=self.role_maker. _is_heter_parameter_server_mode) tables = [] for idx, (name, ctx) in enumerate(send_ctx.items()): if ctx.is_tensor_table() or len(ctx.origin_varnames()) < 1: continue table = Table() table.id = ctx.table_id() common = CommonAccessor() if ctx.is_sparse(): table.type = "PS_SPARSE_TABLE" table.shard_num = 256 if self.compiled_strategy.is_geo_mode(): table.table_class = "SparseGeoTable" else: table.table_class = "CommonSparseTable" common.table_name = self.compiled_strategy.grad_name_to_param_name[ ctx.origin_varnames()[0]] else: table.type = "PS_DENSE_TABLE" table.table_class = "CommonDenseTable" table.shard_num = 256 common.table_name = "MergedDense" common.parse_by_optimizer( ctx.origin_varnames()[0], ctx.is_sparse(), ctx.sections()[1] if ctx.is_sparse() else ctx.sections()[0], self.compiled_strategy) if ctx.is_sparse(): common.parse_entry(common.table_name, self.origin_main_program) if is_sync: common.sync = "true" else: common.sync = "false" table.common = common accessor = _build_merge_accessor(ctx) table.accessor = accessor tables.append(table) tensor_table_dict = self.compiled_strategy.get_tensor_table_dict() if len(tensor_table_dict) > 0: tables = _add_tensor_table(tables) else: empty_porgram = Program() self._server_sub_program.append(empty_porgram.desc) barrier_table = _build_barrier_table(len(tables)) tables.append(barrier_table) return tables if is_server: server = Server() downpour_server = DownpourServer() service = Service() downpour_server.set_service_param(service) tables = _get_tables() downpour_server.tables = tables server.add_server(downpour_server) return server else: worker = Worker() downpour_worker = DownpourWorker() tables = _get_tables() downpour_worker.tables = tables worker.add_worker(downpour_worker) return worker def _init_server(self, dirname=None, var_names=None, **kwargs): if self.role_maker._is_heter_worker(): self._init_heter_worker() return role_id = self.compiled_strategy.get_role_id() endpoints = self.compiled_strategy.get_ps_endpoints() is_sync = self.compiled_strategy.is_sync_mode() trainers = self.compiled_strategy.get_trainers() server = self._get_fleet_proto(is_server=True, is_sync=is_sync) proto_txt = str(server) debug = bool(os.getenv("PSERVER_DEBUG", "0")) if debug: print("server: \n{}".format(proto_txt)) string_hosts = [] for idx, ep in enumerate(endpoints): host, port = ep.split(":") pshost = fluid.core.PSHost(host, int(port), idx) string_hosts.append(pshost.serialize_to_string()) self._server = fluid.core.DistFleetWrapper() self._server.init_server(proto_txt, string_hosts, role_id, trainers, self._server_sub_program) from paddle.fluid.incubate.fleet.parameter_server.ir.public import get_sparse_tablenames dist_varnames = get_sparse_tablenames(self.origin_main_program, True) sparse_varnames = get_sparse_tablenames(self.origin_main_program, False) distributed_varnames = dist_varnames + sparse_varnames if var_names is None: load_varnames = distributed_varnames else: for var_name in var_names: if var_name not in distributed_varnames: raise ValueError( "fleet.init server can only load sparse variables in {}" .format(distributed_varnames)) load_varnames = var_names if dirname is None or not load_varnames: return sparse_table_maps = {} for table in server.servers[0].tables: if table.type == "PS_SPARSE_TABLE" and table.common is not None: sparse_table_maps[table.common.table_name] = table.id dirname = os.path.normpath(dirname) pserver_id = self.role_maker._role_id() import time begin = time.time() for var_name in load_varnames: table_id = sparse_table_maps[var_name] path = os.path.join(dirname, var_name + PSERVER_SAVE_SUFFIX, "{}.block{}.txt".format(var_name, pserver_id)) meta = os.path.join(dirname, var_name + PSERVER_SAVE_SUFFIX, "{}.block{}.meta".format(var_name, pserver_id)) self._server.load_sparse(path, meta, table_id) end = time.time() print("init sparse variables: {} cost time: {}".format( load_varnames, end - begin)) def _run_server(self): if self.role_maker._is_heter_worker(): self._run_heter_worker() return ep = self.compiled_strategy.get_ps_endpoint() host, port = ep.split(":") self._server.run_server(host, int(port)) def _init_heter_worker(self): executor = self._get_executor() executor.run(fluid.default_startup_program()) self._init_worker() def _run_heter_worker(self): executor = self._get_executor() executor.run(fluid.default_main_program()) def _stop_worker(self): self._communicator.stop() if self.role_maker._is_heter_parameter_server_mode and self.role_maker._is_worker( ): self._heter_client.stop() executor = self._get_executor() executor.close() @staticmethod def __exclude_vars(exclude_var_names=[]): def is_valid(var): if var.name in exclude_var_names: return False from paddle.fluid.incubate.fleet.parameter_server.ir.public import _get_varname_parts origin_varname, _, _ = _get_varname_parts(var.name) if origin_varname.endswith("@GRAD"): return False if origin_varname == "learning_rate_0": return False if var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH or \ var.desc.type() == core.VarDesc.VarType.FETCH_LIST or \ var.desc.type() == core.VarDesc.VarType.READER: return False return var.persistable return is_valid def _save_sparse_params(self, executor, dirname, context, main_program, mode): from paddle.fluid.incubate.fleet.parameter_server.ir.public import get_sparse_tablenames distributed_varnames = get_sparse_tablenames( self.compiled_strategy.origin_main_program, True) values = [] for id, names in context.items(): if names not in distributed_varnames: # only save sparse param to local self._worker.recv_and_save_model(id, dirname) # save sparse & distributed param on server self._worker.save_one_model(id, dirname, mode) values.extend(names) return values def _save_distributed_persistables(self, executor, dirname, main_program, mode=0): denses = self.compiled_strategy.get_the_one_recv_context( is_dense=True, split_dense_table=self.role_maker._is_heter_parameter_server_mode, use_origin_program=True) sparses = self.compiled_strategy.get_the_one_recv_context( is_dense=False, split_dense_table=self.role_maker._is_heter_parameter_server_mode, use_origin_program=True) sparse_varnames = self._save_sparse_params(executor, dirname, sparses, main_program, mode) recv_dense_varnames = [] for id, names in denses.items(): recv_dense_varnames.extend(names) saved_varnames = sparse_varnames remaining_vars = list( filter(TheOnePSRuntime.__exclude_vars(saved_varnames), main_program.list_vars())) fluid.io.save_vars(executor, main_program=main_program, dirname=dirname, vars=remaining_vars) def _ps_inference_save_persistables(self, executor, dirname, main_program=None, mode=0, **kwargs): """ This function filters out all variables with `persistable==True` from the give `main_program` and then saves these variables to the folder `dirname` or file `filename`. The `dirname` is used to specify the folder where persistable variables are going to be saved. If you would like to save variables in separate files, set `filename` None; if you would like to save all variables in a single file, use `filename` to specify the file name. """ if isinstance(executor, ParallelExecutor): raise TypeError( "in fleet.save_persistables() function, executor must be as Executor type, ParallelExecutor is not allowed" ) if not isinstance(executor, Executor): raise TypeError( "in fleet.save_persistables() function, executor must be as Executor type" ) if main_program is None: main_program = self.compiled_strategy.get_origin_ps_main_program() if isinstance(main_program, CompiledProgram): raise TypeError( "in fleet.save_persistables() function, main_program must be as Program type, CompiledProgram is not allowed" ) # Todo(MrChengmo): Save optimizer status self._save_distributed_persistables(executor, dirname, main_program, mode) def _ps_inference_save_inference_model(self, executor, dirname, feeded_var_names, target_vars, main_program=None, export_for_deployment=True, mode=0): """ Prune the given `main_program` to build a new program especially for inference, and then save it and all related parameters to given `dirname` by the `executor`. """ if isinstance(executor, ParallelExecutor): raise TypeError( "in fleet.save_inference_model() function, executor must be as Executor type, ParallelExecutor is not allowed" ) if not isinstance(executor, Executor): raise TypeError( "in fleet.save_inference_model() function, executor must be as Executor type" ) if main_program is not None: if isinstance(main_program, CompiledProgram): raise TypeError( "in fleet.save_inference_model() function, main_program must be as Program type, CompiledProgram is not allowed" ) fluid.io.save_inference_model(dirname, feeded_var_names, target_vars, executor, main_program, None, None, export_for_deployment) else: fluid.io.save_inference_model(dirname, feeded_var_names, target_vars, executor, self.origin_main_program, None, None, export_for_deployment, True) model_basename = "__model__" model_filename = os.path.join(dirname, model_basename) with open(model_filename, "rb") as f: program_desc_str = f.read() program = Program.parse_from_string(program_desc_str) program._copy_dist_param_info_from(fluid.default_main_program()) self._ps_inference_save_persistables(executor, dirname, program, mode) def _save_inference_model(self, *args, **kwargs): self._ps_inference_save_inference_model(*args, **kwargs) def _save_persistables(self, *args, **kwargs): self._ps_inference_save_persistables(*args, **kwargs) def _shrink(self, threshold): import paddle.distributed.fleet as fleet fleet.util.barrier() if self.role_maker._is_first_worker(): sparses = self.compiled_strategy.get_the_one_recv_context( is_dense=False, split_dense_table=self.role_maker. _is_heter_parameter_server_mode, use_origin_program=True) for id, names in sparses.items(): self._worker.shrink_sparse_table(id, threshold) fleet.util.barrier()
class ParameterServerRuntime(RuntimeBase): def __init__(self): super(ParameterServerRuntime, self).__init__() self._communicator = None def _set_basic_info(self, context): self.context = context self.role_maker = context["role_maker"] self.origin_main_program = context["origin_main_program"] self.origin_startup_program = context["origin_startup_program"] self.async_strategy = self._get_distributed_strategy() self.compiled_strategy = self.build_compiled_startegy() def _get_distributed_strategy(self): strategy = None from paddle.fluid.incubate.fleet.parameter_server.distribute_transpiler.distributed_strategy import StrategyFactory dist_strategy = self.context["valid_strategy"] k_steps = dist_strategy.a_sync_configs["k_steps"] if not dist_strategy.a_sync and k_steps == 0: strategy = StrategyFactory.create_sync_strategy() if dist_strategy.a_sync and k_steps == 0: strategy = StrategyFactory.create_async_strategy() if dist_strategy.a_sync and k_steps > 0: strategy = StrategyFactory.create_geo_strategy(k_steps) if not strategy: raise ValueError("k_steps must be invalid value, please check") return strategy def build_compiled_startegy(self): from paddle.fluid.incubate.fleet.parameter_server.ir.public import CompileTimeStrategy compiled_config = CompileTimeStrategy(self.origin_main_program, self.origin_main_program, self.async_strategy, self.role_maker) return compiled_config def _load_sparse_params(self, executor, dirname, varnames, main_program=None): assert vars != None check_vars = [] load_prog = Program() load_block = load_prog.global_block() def _in_varnames(var): return var.name in varnames load_vars = list( filter(_in_varnames, fluid.default_main_program().list_vars())) if main_program is None: main_program = self.origin_main_program from paddle.fluid.incubate.fleet.parameter_server.ir.public import _get_varname_parts for each_var in load_vars: assert isinstance(each_var, Variable) origin_varname, _, _ = _get_varname_parts(each_var.name) new_var = fluid.io._clone_var_in_block_(load_block, each_var) var_path = os.path.join(dirname, origin_varname) if not os.path.exists(var_path): raise ValueError( "SelectedRows var {} can not find at {}".format( new_var.name, var_path)) if os.path.isfile(var_path): load_block.append_op(type='sparse_tensor_load', inputs={}, outputs={'Out': [new_var]}, attrs={ 'file_path': os.path.join(dirname, origin_varname), 'node_index': self.role_maker._server_index(), 'node_num': self.role_maker._server_num(), 'shape': each_var.shape }) check_vars.append(each_var) executor.run(load_prog) def _load_distributed_params(self, dirname, varnames): from paddle.fluid.communicator import LargeScaleKV from paddle.fluid.incubate.fleet.parameter_server.ir.public import _get_varname_parts scale_kv = LargeScaleKV() for varname in varnames: origin_varname, _, _ = _get_varname_parts(varname) sparse_dir = os.path.join(dirname, origin_varname, varname) scale_kv.load(varname, sparse_dir) @staticmethod def __exclude_vars(exclude_var_names=[]): def is_valid(var): if var.name in exclude_var_names: return False from paddle.fluid.incubate.fleet.parameter_server.ir.public import _get_varname_parts origin_varname, _, _ = _get_varname_parts(var.name) if origin_varname.endswith("@GRAD"): return False if origin_varname == "learning_rate_0": return False if var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH or \ var.desc.type() == core.VarDesc.VarType.FETCH_LIST or \ var.desc.type() == core.VarDesc.VarType.READER: return False return var.persistable return is_valid def _init_worker(self): def sync_strategy_envs(): kwargs = {} kwargs[ "pserver_endpoints"] = self.role_maker._get_pserver_endpoints( ) kwargs["trainer_id"] = self.role_maker._worker_index() return kwargs def geo_strategy_envs(): from paddle.fluid.incubate.fleet.parameter_server.ir.public import get_sparse_tablenames def get_sparse_attrs(): opt_init_map = {} opt_init_map["gaussian_random"] = ["seed", "mean", "std"] opt_init_map["fill_constant"] = ["value"] opt_init_map["uniform_random"] = ["seed", "min", "max"] opt_init_map["truncated_gaussian_random"] = [ "seed", "mean", "std" ] dist_varnames = get_sparse_tablenames(self.origin_main_program, True) sparse_varnames = get_sparse_tablenames( self.origin_main_program, False) if len(dist_varnames) != 0: raise ValueError( "GeoStrategy can not support large scale embeding now, please use fluid.layers.embedding" ) init_attrs = [] for value_name in sparse_varnames: value_var = self.origin_main_program.global_block( ).vars[value_name] value_attr = [ value_name, ",".join([str(dim) for dim in value_var.shape]) ] for op in self.origin_startup_program.global_block().ops: if op.type in opt_init_map.keys( ) and value_name == op.output("Out")[0]: init_attr = [op.type] for attr in opt_init_map[op.type]: init_attr.append(str(op.attr(attr))) value_attr.append("&".join(init_attr)) init_attrs.append(":".join(value_attr)) break return "#".join(init_attrs) kwargs = {} kwargs["trainers"] = self.role_maker._worker_num() kwargs["sparse_attrs"] = get_sparse_attrs() return kwargs from paddle.fluid.incubate.fleet.parameter_server.ir.public import _get_lr_ops, _has_global_step from paddle.fluid.incubate.fleet.parameter_server.distribute_transpiler.distributed_strategy import \ SyncStrategy, GeoStrategy trainer_config = self.async_strategy.get_trainer_runtime_config() print(trainer_config) dist_strategy = self.context["valid_strategy"] launch_barrier = dist_strategy.a_sync_configs["launch_barrier"] if launch_barrier: # for trainer wait server ready wait_server_ready(self.role_maker._get_pserver_endpoints()) # for ps-heter mode, wait heter worker ready if self.role_maker._is_heter_parameter_server_mode and self.role_maker._is_worker( ): wait_server_ready( self.role_maker._get_heter_worker_endpoints()) lrs = _has_global_step(_get_lr_ops(self.origin_main_program)) if lrs: kwargs = {"need_global_step": "1"} else: kwargs = {"need_global_step": "0"} if isinstance(self.async_strategy, GeoStrategy): geo_kwargs = geo_strategy_envs() kwargs.update(geo_kwargs) if isinstance(self.async_strategy, SyncStrategy): sync_kwargs = sync_strategy_envs() kwargs.update(sync_kwargs) kwargs = kwargs if kwargs else None send_ctx = self.compiled_strategy.get_communicator_send_context() if self.compiled_strategy.is_geo_mode(): recv_ctx = self.compiled_strategy.get_communicator_recv_context( recv_type=4) else: recv_ctx = self.compiled_strategy.get_communicator_recv_context( recv_type=1) from paddle.fluid.communicator import Communicator self._communicator = Communicator( trainer_config.mode, kwargs, trainer_config.get_communicator_flags()) self._communicator.init_with_ctx(send_ctx, recv_ctx) if not self._communicator.is_running(): self._communicator.start() else: warnings.warn("communicator has been initialized, skip") def _get_executor(self): executor = fluid.Executor(fluid.CPUPlace()) if self.role_maker._is_heter_parameter_server_mode: heter_worker_device_guard = self.context[ "valid_strategy"].a_sync_configs[ "heter_worker_device_guard"].upper() if heter_worker_device_guard not in ["GPU", "XPU", "CPU"]: raise ValueError("Heter Worker Not Support Device {}".format( heter_worker_device_guard)) if self.role_maker._is_heter_worker(): if heter_worker_device_guard == "GPU": executor = Executor( fluid.CUDAPlace( int(os.getenv("FLAGS_selected_gpus", "0")))) elif heter_worker_device_guard == "XPU": executor = Executor( fluid.XPUPlace( int(os.getenv("FLAGS_selected_xpus", "0")))) return executor def _init_server(self, *args, **kwargs): if len(args) > 1: raise ValueError("init server can only accept 1 args: `dirname`") elif len(args) == 1: model_dirname = args[0] else: model_dirname = None executor = self._get_executor() if self.role_maker._is_heter_worker( ) and self.context["valid_strategy"].a_sync_configs["launch_barrier"]: # for heter trainer wait server ready wait_server_ready(self.role_maker._get_pserver_endpoints()) executor.run(fluid.default_startup_program()) if self.role_maker._is_heter_worker(): self._init_worker() return sparse_varnames = self.compiled_strategy.get_sparse_varname_on_ps( False) sparse_related_optimize_varnames = [] for var_name in sparse_varnames: sparse_related_optimize_varnames += self.compiled_strategy.get_optimize_varname_on_ps( var_name) sparse_related_optimize_varnames = list( set(sparse_related_optimize_varnames)) distribtued_varnames = self.compiled_strategy.get_sparse_varname_on_ps( True) distributed_related_optimize_varnames = [] for var_name in distribtued_varnames: distributed_related_optimize_varnames += self.compiled_strategy.get_optimize_varname_on_ps( var_name) distributed_related_optimize_varnames = list( set(distributed_related_optimize_varnames)) remaining_vars = list( filter( ParameterServerRuntime.__exclude_vars( sparse_varnames + distribtued_varnames + sparse_related_optimize_varnames + distributed_related_optimize_varnames), fluid.default_main_program().list_vars())) if not model_dirname: return if not os.path.isdir(model_dirname): raise ValueError("There is no directory named '%s'", model_dirname) # load dense fluid.io.load_vars(executor, main_program=fluid.default_main_program(), dirname=model_dirname, vars=remaining_vars) # load sparse self._load_sparse_params(executor=executor, dirname=model_dirname, varnames=sparse_varnames + sparse_related_optimize_varnames) # load large scale self._load_distributed_params(dirname=model_dirname, varnames=distribtued_varnames + distributed_related_optimize_varnames) def _run_server(self): executor = self._get_executor() executor.run(fluid.default_main_program()) def _stop_worker(self): self._communicator.stop() executor = self._get_executor() executor.close() def _get_optimizer_status(self, op, param_name): supported_opts = [ "sgd", "adam", "adagrad", "adamax", "momentum", "lars_momentum", "rmsprop", "decayed_adagrad", "ftrl" ] reshaped_val_map = {} reshaped_val_map["sgd"] = [] reshaped_val_map["adam"] = ["moment1_0", "moment2_0"] reshaped_val_map["adagrad"] = ["moment_0"] reshaped_val_map["adamax"] = ["moment_0", "inf_norm_0"] reshaped_val_map["momentum"] = ["velocity_0"] reshaped_val_map["lars_momentum"] = ["velocity_0"] reshaped_val_map["rmsprop"] = [ "momentum_0", "mean_square_0", "mean_grad_0" ] reshaped_val_map["decayed_adagrad"] = ["moment_0"] reshaped_val_map["ftrl"] = ["squared_0", "linear_0"] orishaped_val_map = {} orishaped_val_map["adam"] = ["beta1_pow_acc_0", "beta2_pow_acc_0"] orishaped_val_map["adamax"] = ["beta1_pow_acc_0"] if op not in supported_opts: raise ValueError( "fleet can not support optimizer: {}, only this can be supported: {}" .format(op, supported_opts)) reshaped_names = [ param_name + "_" + val for val in reshaped_val_map[op] ] if op not in orishaped_val_map: origin_names = [] else: origin_names = [ param_name + "_" + val for val in orishaped_val_map[op] ] return reshaped_names, origin_names def _get_optimizer_op(self, param_name): from paddle.fluid.incubate.fleet.parameter_server.ir.public import _get_optimize_ops opts = _get_optimize_ops(self.origin_main_program) for op in opts: if "Param" in op.input_names and \ "LearningRate" in op.input_names and op.input("Param")[0] == param_name: return op def _save_dense_params(self, executor, dirname, context, main_program): self._communicator.recv() prog = Program() block = prog.global_block() local_vars = [] for name, var_ctx in context.items(): if len(var_ctx.origin_varnames()) != 1: raise ValueError("Dense can not support split now.") varname = var_ctx.origin_varnames()[0] local_vars.append(varname) optimizer = self._get_optimizer_op(varname) reshaped_varnames, origin_varnames = self._get_optimizer_status( optimizer.type, varname) for var_name in [varname] + reshaped_varnames + origin_varnames: var = self.origin_main_program.global_block().vars[var_name] block.append_op(type='recv_save', attrs={ "trainer_id": self.role_maker._worker_index(), "shape": var.shape, "slice_shapes": [",".join([str(i) for i in var.shape])], "slice_varnames": [var.name], "remote_varnames": [var.name], "is_sparse": False, "endpoints": var_ctx.split_endpoints(), "file_path": os.path.join(dirname, var.name) }) executor.run(prog) return local_vars def _save_sparse_params(self, executor, dirname, context, main_program): prog = Program() block = prog.global_block() local_vars = [] for name, var_ctx in context.items(): if len(var_ctx.origin_varnames()) != 1: raise ValueError("Dense can not support split now.") varname = var_ctx.origin_varnames()[0] local_vars.append(varname) optimizer = self._get_optimizer_op(varname) reshaped_varnames, origin_varnames = self._get_optimizer_status( optimizer.type, varname) var = self.origin_main_program.global_block().vars[varname] slice_shapes = [] dims1 = ",".join([str(i) for i in var.shape[1:]]) for section in var_ctx.sections(): slice_shapes.append(str(section) + dims1) block.append_op(type='recv_save', attrs={ "trainer_id": self.role_maker._worker_index(), "shape": var.shape, "slice_shapes": slice_shapes, "slice_varnames": var_ctx.split_varnames(), "remote_varnames": var_ctx.split_varnames(), "is_sparse": True, "endpoints": var_ctx.split_endpoints(), "pserver_num": len(self.role_maker._get_pserver_endpoints()), "file_path": os.path.join(dirname, var.name) }) for reshaped_varname in reshaped_varnames: var = self.origin_main_program.global_block( ).vars[reshaped_varname] slice_varnames = [] remote_varnames = [] for i in range(len(var_ctx.split_varnames())): slice_varnames.append("{}.block{}".format( reshaped_varname, i)) remote_varnames.append(reshaped_varname) block.append_op( type='recv_save', attrs={ "trainer_id": self.role_maker._worker_index(), "shape": var.shape, "slice_shapes": slice_shapes, "slice_varnames": slice_varnames, "remote_varnames": remote_varnames, "is_sparse": True, "endpoints": var_ctx.split_endpoints(), "pserver_num": len(self.role_maker._get_pserver_endpoints()), "file_path": os.path.join(dirname, var.name) }) for origin_varname in origin_varnames: var = self.origin_main_program.global_block( ).vars[origin_varname] block.append_op(type='recv_save', attrs={ "trainer_id": self.role_maker._worker_index(), "shape": var.shape, "slice_shapes": [",".join([str(i) for i in var.shape])], "slice_varnames": [origin_varname], "remote_varnames": [origin_varname], "is_sparse": False, "endpoints": var_ctx.split_endpoints()[:1], "file_path": os.path.join(dirname, var.name) }) executor.run(prog) return context.keys() def _save_distributed_params(self, executor, dirname, context, mode): prog = Program() block = prog.global_block() for name, var_ctx in context.items(): block.append_op(type='checkpoint_notify', attrs={ "varname": name, "mode": mode, "slice_varnames": var_ctx.split_varnames(), "remote_varnames": var_ctx.split_varnames(), "endpoints": var_ctx.split_endpoints(), "dirname": dirname }) executor.run(prog) return context.keys() def _save_distributed_persistables(self, executor, dirname, main_program, mode): dense_ctx = self.compiled_strategy.get_communicator_recv_context( recv_type=1, use_origin_program=True) sparse_ctx = self.compiled_strategy.get_communicator_recv_context( recv_type=2, use_origin_program=True) distributed_ctx = self.compiled_strategy.get_communicator_recv_context( recv_type=3, use_origin_program=True) recv_dense_varnames = self._save_dense_params(executor, dirname, dense_ctx, main_program) recv_sparse_varnames = self._save_sparse_params( executor, dirname, sparse_ctx, main_program) recv_distributed_varnames = self._save_distributed_params( executor, dirname, distributed_ctx, mode) saved_varnames = recv_dense_varnames + list( recv_sparse_varnames) + list(recv_distributed_varnames) remaining_vars = list( filter(ParameterServerRuntime.__exclude_vars(saved_varnames), main_program.list_vars())) fluid.io.save_vars(executor, main_program=main_program, dirname=dirname, vars=remaining_vars) def _ps_inference_save_persistables(self, executor, dirname, main_program=None, mode=0, **kwargs): """ This function filters out all variables with `persistable==True` from the give `main_program` and then saves these variables to the folder `dirname` or file `filename`. The `dirname` is used to specify the folder where persistable variables are going to be saved. If you would like to save variables in separate files, set `filename` None; if you would like to save all variables in a single file, use `filename` to specify the file name. """ if isinstance(executor, ParallelExecutor): raise TypeError( "in fleet.save_persistables() function, executor must be as Executor type, ParallelExecutor is not allowed" ) if not isinstance(executor, Executor): raise TypeError( "in fleet.save_persistables() function, executor must be as Executor type" ) if main_program is None: main_program = self.compiled_strategy.get_origin_ps_main_program() if isinstance(main_program, CompiledProgram): raise TypeError( "in fleet.save_persistables() function, main_program must be as Program type, CompiledProgram is not allowed" ) self._save_distributed_persistables(executor, dirname, main_program, mode) def _ps_inference_save_inference_model(self, executor, dirname, feeded_var_names, target_vars, main_program=None, export_for_deployment=True): """ Prune the given `main_program` to build a new program especially for inference, and then save it and all related parameters to given `dirname` by the `executor`. """ if isinstance(executor, ParallelExecutor): raise TypeError( "in fleet.save_inference_model() function, executor must be as Executor type, ParallelExecutor is not allowed" ) if not isinstance(executor, Executor): raise TypeError( "in fleet.save_inference_model() function, executor must be as Executor type" ) if main_program is not None: if isinstance(main_program, CompiledProgram): raise TypeError( "in fleet.save_inference_model() function, main_program must be as Program type, CompiledProgram is not allowed" ) fluid.io.save_inference_model(dirname, feeded_var_names, target_vars, executor, main_program, None, None, export_for_deployment) else: fluid.io.save_inference_model(dirname, feeded_var_names, target_vars, executor, self.origin_main_program, None, None, export_for_deployment, True) model_basename = "__model__" model_filename = os.path.join(dirname, model_basename) with open(model_filename, "rb") as f: program_desc_str = f.read() program = Program.parse_from_string(program_desc_str) program._copy_dist_param_info_from(fluid.default_main_program()) self._ps_inference_save_persistables(executor, dirname, program, mode=0) def _save_inference_model(self, *args, **kwargs): self._ps_inference_save_inference_model(*args, **kwargs) def _save_persistables(self, *args, **kwargs): self._ps_inference_save_persistables(*args, **kwargs)
class FleetTranspiler(Fleet): """ A subclass for compatibility with fluid.transpiler.DistributeTranspiler. """ def __init__(self): super(FleetTranspiler, self).__init__(Mode.TRANSPILER) self._inner_mode = None if version.is_transpiler(): self._inner_mode = PSMode.TRANSPILER else: self._inner_mode = PSMode.PSLIB self._strategy = None self._transpiler = None self._origin_main_program = None self._origin_startup_program = None self._communicator = None self.startup_program = None self.main_program = None self._opt_info = None self._local_ip = 0 self._fleet_ptr = None self._main_programs = [] self._scopes = [] self._client2client_request_timeout_ms = 500000 self._client2client_connect_timeout_ms = 10000 self._client2client_max_retry = 3 def init(self, role_maker=None): if role_maker is None: role_maker = MPISymetricRoleMaker() super(FleetTranspiler, self).init(role_maker) self._fleet_ptr = core.Fleet() def _init_transpiler_worker(self): """ `init_worker` has many many functions to do before training, first, wait for all parameter servers launch completely. second, run executor to initialize startup program third, wait for all worker initialize completely. Returns: None """ def sync_strategy_envs(): kwargs = {} kwargs[ "pserver_endpoints"] = self._role_maker.get_pserver_endpoints( ) kwargs["trainer_id"] = self._role_maker.worker_index() return kwargs def geo_strategy_envs(): def get_sparse_attrs(): opt_init_map = {} opt_init_map["gaussian_random"] = ["seed", "mean", "std"] opt_init_map["fill_constant"] = ["value"] opt_init_map["uniform_random"] = ["seed", "min", "max"] opt_init_map["truncated_gaussian_random"] = [ "seed", "mean", "std" ] dist_varnames = get_sparse_tablenames( self._origin_main_program, True) sparse_varnames = get_sparse_tablenames( self._origin_main_program, False) if len(dist_varnames) != 0: raise ValueError( "GeoStrategy can not support large scale embeding now, please use fluid.layers.embedding" ) init_attrs = [] for value_name in sparse_varnames: value_var = self._origin_main_program.global_block( ).vars[value_name] value_attr = [ value_name, ",".join([str(dim) for dim in value_var.shape]) ] for op in self._origin_startup_program.global_block().ops: if op.type in opt_init_map.keys( ) and value_name == op.output("Out")[0]: init_attr = [op.type] for attr in opt_init_map[op.type]: init_attr.append(str(op.attr(attr))) value_attr.append("&".join(init_attr)) init_attrs.append(":".join(value_attr)) break return "#".join(init_attrs) kwargs = {} kwargs["trainers"] = self.worker_num() kwargs["sparse_attrs"] = get_sparse_attrs() return kwargs # if MPISymetricRoleMaker is defined # we suppose a user wants to submit job on mpi cluster if isinstance(self._role_maker, MPISymetricRoleMaker): # check whether server has been initialized wait_server_ready(self.server_endpoints(to_string=False)) trainer_config = self._strategy.get_trainer_runtime_config() print(trainer_config) lrs = _has_global_step(_get_lr_ops(self._origin_main_program)) if lrs > 0: kwargs = {"need_global_step": "1"} else: kwargs = {"need_global_step": "0"} if isinstance(self._strategy, GeoStrategy): geo_kwargs = geo_strategy_envs() kwargs.update(geo_kwargs) if isinstance(self._strategy, SyncStrategy): sync_kwargs = sync_strategy_envs() kwargs.update(sync_kwargs) kwargs = kwargs if kwargs else None send_ctx = fleet.compiled_config.get_communicator_send_context() if self.compiled_config.is_geo_mode(): recv_ctx = fleet.compiled_config.get_communicator_recv_context( recv_type=4) else: recv_ctx = fleet.compiled_config.get_communicator_recv_context( recv_type=1) from paddle.fluid.communicator import Communicator self._communicator = Communicator( trainer_config.mode, kwargs, trainer_config.get_communicator_flags()) self._communicator.init_with_ctx(send_ctx, recv_ctx) if not self._communicator.is_running(): self._communicator.start() else: raise ValueError( "Communicator can only be inited once, please check") def init_worker(self): """ `init_worker` has many many functions to do before training, first, wait for all parameter servers launch completely. second, run executor to initialize startup program third, wait for all worker initialize completely. Returns: None """ if self._inner_mode == PSMode.TRANSPILER: self._init_transpiler_worker() else: raise NotImplementedError("add implement later") def _init_transpiler_server(self, model_dir=None): if not self.startup_program: raise ValueError( "startup_program is None, need invoke DistributedOptimizer.minimize first" ) self._executor.run(self.startup_program) if model_dir: if not os.path.isdir(model_dir): raise ValueError("There is no directory named '%s'", model_dir) sparse_varnames = self.compiled_config.get_sparse_varname_on_ps( True) distribtued_varnames = self.compiled_config.get_sparse_varname_on_ps( False) remaining_vars = list( filter( FleetTranspiler.__exclude_vars(sparse_varnames + distribtued_varnames), self.main_program.list_vars())) fluid.io.load_vars(self._executor, main_program=self.main_program, dirname=model_dir, vars=remaining_vars) self._load_sparse_params(dirname=model_dir, varnames=sparse_varnames) # todo(tangwei12) load distributed vars # self._load_sparse_params(dirname=model_dir, varnames=distribtued_varnames) def init_server(self, model_dir=None, **kwargs): """ `init_server` has many many functions to do before start pserver, first, run executor to initialize startup program, second, if the `model_dir` is not empty, it will load parameters from it for increment training. Args: model_dir(str): The directory path. Returns: None """ if self._inner_mode == PSMode.TRANSPILER: self._init_transpiler_server(model_dir) else: raise NotImplementedError("add implement later") def run_server(self): """ `run_server` execute executor to start pserver main program. Returns: None """ if self._inner_mode == PSMode.TRANSPILER: if not self.main_program: raise ValueError( "main_program is None, need invoke DistributedOptimizer.minimize first" ) self._executor.run(self.main_program) else: raise NotImplementedError("add implement later") def stop_worker(self): """ Close this executor. For the distributed training, this method would free the resource on PServers related to the current Trainer. Returns: None """ if self._inner_mode == PSMode.TRANSPILER: self._communicator.stop() if isinstance(self._role_maker, MPISymetricRoleMaker): self._role_maker._finalize() self._executor.close() else: raise NotImplementedError("add implement later") def distributed_optimizer(self, optimizer, strategy=None): """ Optimizer for distributed training. For the distributed training, this method would rebuild a new instance of DistributedOptimizer. Which has basic Optimizer function and special features for distributed training. Args: optimizer(Optimizer): The executor to run for init server. strategy(DistributeTranspilerConfig): Extra properties for distributed optimizer. Returns: TranspilerOptimizer: subclass of DistributedOptimizer. """ if not isinstance(optimizer, Optimizer): raise ValueError("optimizer must be an instance of Optimizer") if not self._is_initialized: raise ValueError( "fleet.init(role) to initialize before optimizer.minimize(loss)" ) if not strategy: _strategy = StrategyFactory.create_async_strategy() if isinstance(strategy, DistributedStrategy): _strategy = strategy elif isinstance(strategy, DistributeTranspilerConfig): if strategy.sync_mode: _strategy = SyncStrategy() else: if strategy.runtime_split_send_recv: if strategy.geo_sgd_mode: _strategy = GeoStrategy( strategy.geo_sgd_need_push_nums) elif strategy.half_async: _strategy = HalfAsyncStrategy() else: _strategy = AsyncStrategy() else: _strategy = HalfAsyncStrategy() # for half_async compatibility strategy.half_async = True strategy.runtime_split_send_recv = True _strategy.set_program_config(strategy) elif isinstance(strategy, dict): if self._inner_mode != PSMode.PSLIB: raise TypeError("Dict strategy can only be used at PSLIB Mode") _strategy = StrategyFactory.create_async_strategy() _strategy.set_pslib_runtime_config(strategy) else: raise TypeError( "strategy must be an instance of DistributeTranspilerConfig, DistributedStrategy" ) self._strategy = _strategy self._optimizer = ParameterServerOptimizer(optimizer, _strategy) return self._optimizer def save_inference_model(self, executor, dirname, feeded_var_names, target_vars, main_program=None, export_for_deployment=True): """ Prune the given `main_program` to build a new program especially for inference, and then save it and all related parameters to given `dirname` by the `executor`. """ if self._inner_mode == PSMode.PSLIB: raise NotImplementedError("add implement later") if isinstance(executor, ParallelExecutor): raise TypeError( "in fleet.save_inference_model() function, executor must be as Executor type, ParallelExecutor is not allowed" ) if not isinstance(executor, Executor): raise TypeError( "in fleet.save_inference_model() function, executor must be as Executor type" ) # Todo(MrChengmo): support recv&save GPU-Kernel for ps-gpu model save if not isinstance(executor.place, fluid.CPUPlace): save_executor = Executor(fluid.CPUPlace()) else: save_executor = executor if main_program is not None: if isinstance(main_program, CompiledProgram): raise TypeError( "in fleet.save_inference_model() function, main_program must be as Program type, CompiledProgram is not allowed" ) fluid.io.save_inference_model(dirname, feeded_var_names, target_vars, executor, main_program, None, None, export_for_deployment) else: fluid.io.save_inference_model(dirname, feeded_var_names, target_vars, executor, self._origin_main_program, None, None, export_for_deployment, True) model_basename = "__model__" model_filename = os.path.join(dirname, model_basename) with open(model_filename, "rb") as f: program_desc_str = f.read() program = Program.parse_from_string(program_desc_str) program._copy_dist_param_info_from(self.main_program) self.save_persistables(executor, dirname, program) def _load_sparse_params(self, dirname, varnames): from paddle.fluid.communicator import LargeScaleKV scale_kv = LargeScaleKV() for varname in varnames: origin_varname, _, _ = public._get_varname_parts(varname) sparse_dir = os.path.join(dirname, origin_varname, varname) scale_kv.load(varname, sparse_dir) def _get_optimizer_status(self, op, param_name): supported_opts = [ "sgd", "adam", "adagrad", "adamax", "momentum", "lars_momentum", "rmsprop", "decayed_adagrad", "ftrl" ] reshaped_val_map = {} reshaped_val_map["sgd"] = [] reshaped_val_map["adam"] = ["moment1_0", "moment2_0"] reshaped_val_map["adagrad"] = ["moment_0"] reshaped_val_map["adamax"] = ["moment_0", "inf_norm_0"] reshaped_val_map["momentum"] = ["velocity_0"] reshaped_val_map["lars_momentum"] = ["velocity_0"] reshaped_val_map["rmsprop"] = [ "momentum_0", "mean_square_0", "mean_grad_0" ] reshaped_val_map["decayed_adagrad"] = ["moment_0"] reshaped_val_map["ftrl"] = ["squared_0", "linear_0"] orishaped_val_map = {} orishaped_val_map["adam"] = ["beta1_pow_acc_0", "beta2_pow_acc_0"] orishaped_val_map["adamax"] = ["beta1_pow_acc_0"] if op not in supported_opts: raise ValueError( "fleet can not support optimizer: {}, only this can be supported: {}" .format(op, supported_opts)) reshaped_names = [ param_name + "_" + val for val in reshaped_val_map[op] ] if op not in orishaped_val_map: origin_names = [] else: origin_names = [ param_name + "_" + val for val in orishaped_val_map[op] ] return reshaped_names, origin_names def _get_optimizer_op(self, param_name): opts = public._get_optimize_ops(self._origin_main_program) for op in opts: if "Param" in op.input_names and \ "LearningRate" in op.input_names and op.input("Param")[0] == param_name: return op def _save_dense_params(self, executor, dirname, context, main_program): self._communicator.recv() prog = Program() block = prog.global_block() local_vars = [] for name, var_ctx in context.items(): if len(var_ctx.origin_varnames()) != 1: raise ValueError("Dense can not support split now.") varname = var_ctx.origin_varnames()[0] local_vars.append(varname) optimizer = self._get_optimizer_op(varname) reshaped_varnames, origin_varnames = self._get_optimizer_status( optimizer.type, varname) for var_name in [varname] + reshaped_varnames + origin_varnames: var = self._origin_main_program.global_block().vars[var_name] block.append_op(type='recv_save', attrs={ "trainer_id": self._role_maker.worker_index(), "shape": var.shape, "slice_shapes": [",".join([str(i) for i in var.shape])], "slice_varnames": [var.name], "remote_varnames": [var.name], "is_sparse": False, "endpoints": var_ctx.split_endpoints(), "file_path": os.path.join(dirname, var.name) }) executor.run(prog) return local_vars def _save_sparse_params(self, executor, dirname, context, main_program): prog = Program() block = prog.global_block() local_vars = [] for name, var_ctx in context.items(): if len(var_ctx.origin_varnames()) != 1: raise ValueError("Dense can not support split now.") varname = var_ctx.origin_varnames()[0] local_vars.append(varname) optimizer = self._get_optimizer_op(varname) reshaped_varnames, origin_varnames = self._get_optimizer_status( optimizer.type, varname) var = self._origin_main_program.global_block().vars[varname] slice_shapes = [] dims1 = ",".join([str(i) for i in var.shape[1:]]) for section in var_ctx.sections(): slice_shapes.append(str(section) + dims1) block.append_op(type='recv_save', attrs={ "trainer_id": self._role_maker.worker_index(), "shape": var.shape, "slice_shapes": slice_shapes, "slice_varnames": var_ctx.split_varnames(), "remote_varnames": var_ctx.split_varnames(), "is_sparse": True, "endpoints": var_ctx.split_endpoints(), "pserver_num": len(self._role_maker.get_pserver_endpoints()), "file_path": os.path.join(dirname, var.name) }) for reshaped_varname in reshaped_varnames: var = self._origin_main_program.global_block( ).vars[reshaped_varname] slice_varnames = [] remote_varnames = [] for i in range(len(var_ctx.split_varnames())): slice_varnames.append("{}.block{}".format( reshaped_varname, i)) remote_varnames.append(reshaped_varname) block.append_op( type='recv_save', attrs={ "trainer_id": self._role_maker.worker_index(), "shape": var.shape, "slice_shapes": slice_shapes, "slice_varnames": slice_varnames, "remote_varnames": remote_varnames, "is_sparse": True, "endpoints": var_ctx.split_endpoints(), "pserver_num": len(self._role_maker.get_pserver_endpoints()), "file_path": os.path.join(dirname, var.name) }) for origin_varname in origin_varnames: var = self._origin_main_program.global_block( ).vars[origin_varname] block.append_op(type='recv_save', attrs={ "trainer_id": self._role_maker.worker_index(), "shape": var.shape, "slice_shapes": [",".join([str(i) for i in var.shape])], "slice_varnames": [origin_varname], "remote_varnames": [origin_varname], "is_sparse": False, "endpoints": var_ctx.split_endpoints()[:1], "file_path": os.path.join(dirname, var.name) }) executor.run(prog) return context.keys() def _save_distributed_params(self, executor, dirname, context, main_program): prog = Program() block = prog.global_block() for name, var_ctx in context.items(): block.append_op(type='checkpoint_notify', attrs={ "varname": name, "is_slice": True, "slice_varnames": var_ctx.split_varnames(), "remote_varnames": var_ctx.split_varnames(), "endpoints": var_ctx.split_endpoints(), "dirname": dirname }) executor.run(prog) return context.keys() def _save_distributed_persistables(self, executor, dirname, main_program): dense_ctx = fleet.compiled_config.get_communicator_recv_context( recv_type=1) sparse_ctx = fleet.compiled_config.get_communicator_recv_context( recv_type=2) distributed_ctx = fleet.compiled_config.get_communicator_recv_context( recv_type=3) recv_dense_varnames = self._save_dense_params(executor, dirname, dense_ctx, main_program) recv_sparse_varnames = self._save_sparse_params( executor, dirname, sparse_ctx, main_program) recv_distributed_varnames = self._save_distributed_params( executor, dirname, distributed_ctx, main_program) saved_varnames = recv_dense_varnames + list( recv_sparse_varnames) + list(recv_distributed_varnames) remaining_vars = list( filter(FleetTranspiler.__exclude_vars(saved_varnames), main_program.list_vars())) fluid.io.save_vars(executor, main_program=main_program, dirname=dirname, vars=remaining_vars) def save_persistables(self, executor, dirname, main_program=None, **kwargs): """ This function filters out all variables with `persistable==True` from the give `main_program` and then saves these variables to the folder `dirname` or file `filename`. The `dirname` is used to specify the folder where persistable variables are going to be saved. If you would like to save variables in separate files, set `filename` None; if you would like to save all variables in a single file, use `filename` to specify the file name. """ if self._inner_mode == PSMode.PSLIB: raise NotImplementedError("add implement later") if isinstance(executor, ParallelExecutor): raise TypeError( "in fleet.save_persistables() function, executor must be as Executor type, ParallelExecutor is not allowed" ) if not isinstance(executor, Executor): raise TypeError( "in fleet.save_persistables() function, executor must be as Executor type" ) # Todo(MrChengmo): support recv&save GPU-Kernel for ps-gpu model save if not isinstance(executor.place, fluid.CPUPlace): save_executor = Executor(fluid.CPUPlace()) else: save_executor = executor if main_program is None: main_program = self.main_program if isinstance(main_program, CompiledProgram): raise TypeError( "in fleet.save_persistables() function, main_program must be as Program type, CompiledProgram is not allowed" ) self._save_distributed_persistables(save_executor, dirname, main_program) @staticmethod def __exclude_vars(exclude_var_names=[]): def is_valid(var): if var.name in exclude_var_names: return False origin_varname, _, _ = public._get_varname_parts(var.name) if origin_varname.endswith("@GRAD"): return False if origin_varname == "learning_rate_0": return False if var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH or \ var.desc.type() == core.VarDesc.VarType.FETCH_LIST or \ var.desc.type() == core.VarDesc.VarType.READER: return False return var.persistable return is_valid
class DistributedTranspiler(Fleet): """ A subclass for compatibility with fluid.transpiler.DistributeTranspiler. """ def __init__(self): super(DistributedTranspiler, self).__init__(Mode.TRANSPILER) self._transpile_config = None self._transpiler = None self.startup_program = None self.main_program = None self._communicator = None def init_worker(self): """ `init_worker` has many many functions to do before training, first, wait for all parameter servers launch completely. second, run executor to initialize startup program third, wait for all worker initialize completely. Returns: None """ if not self._transpile_config.sync_mode: self._communicator = Communicator(self.main_program) self._communicator.start() def init_server(self, model_dir=None): """ `init_server` has many many functions to do before start pserver, first, run executor to initialize startup program, second, if the `model_dir` is not empty, it will load parameters from it for increment training. Args: model_dir(str): The directory path. Returns: None """ if not self.startup_program: raise ValueError( "startup_program is None, need invoke DistributedOptimizer.minimize first" ) self._executor.run(self.startup_program) if model_dir: if not os.path.isdir(model_dir): raise ValueError("There is no directory named '%s'", model_dir) io.load_persistables(self._executor, model_dir, self.startup_program) def run_server(self): """ `run_server` execute executor to start pserver main program. Returns: None """ if not self.main_program: raise ValueError( "main_program is None, need invoke DistributedOptimizer.minimize first" ) self._executor.run(self.main_program) def stop_worker(self): """ Close this executor. For the distributed training, this method would free the resource on PServers related to the current Trainer. Returns: None """ if not self._transpile_config.sync_mode: self._communicator.stop() self._executor.close() def distributed_optimizer(self, optimizer, strategy=None): """ Optimizer for distributed training. For the distributed training, this method would rebuild a new instance of DistributedOptimizer. Which has basic Optimizer function and special features for distributed training. Args: optimizer(Optimizer): The executor to run for init server. strategy(dict): Extra properties for distributed optimizer. Returns: TranspilerOptimizer: subclass of DistributedOptimizer. """ if not isinstance(optimizer, Optimizer): raise ValueError("optimizer must be an instance of Optimizer") self._optimizer = TranspilerOptimizer(optimizer, strategy) return self._optimizer def save_inference_model(self, executor, dirname, feeded_var_names, target_vars, main_program=None, export_for_deployment=True): """ Prune the given `main_program` to build a new program especially for inference, and then save it and all related parameters to given `dirname` by the `executor`. """ io.save_inference_model(dirname, feeded_var_names, target_vars, executor, main_program, None, None, export_for_deployment) def save_persistables(self, executor, dirname, main_program=None): """ This function filters out all variables with `persistable==True` from the give `main_program` and then saves these variables to the folder `dirname` or file `filename`. The `dirname` is used to specify the folder where persistable variables are going to be saved. If you would like to save variables in separate files, set `filename` None; if you would like to save all variables in a single file, use `filename` to specify the file name. """ io.save_persistables(executor, dirname, main_program, None) def _transpile(self, config): if not isinstance(config, DistributeTranspilerConfig): raise ValueError( "config must be an instance of DistributeTranspilerConfig") if not config.sync_mode: config.runtime_split_send_recv = True self._transpile_config = config self._transpiler = OriginTranspiler(config) self._transpiler.transpile( trainer_id=fleet.worker_index(), pservers=fleet.server_endpoints(to_string=True), trainers=fleet.worker_num(), sync_mode=config.sync_mode) if self.is_worker(): self.main_program = self._transpiler.get_trainer_program() self.startup_program = default_startup_program() else: self.main_program, self.startup_program = \ self._transpiler.get_pserver_programs(self.server_endpoints()[self.server_index()])