Пример #1
0
    def sgd_optimizer(self, lr_policy, loss):
        decayed_lr = self.get_lr(lr_policy)
        optimizer = fluid.optimizer.Momentum(
            learning_rate=decayed_lr,
            momentum=self.momentum,
            regularization=fluid.regularizer.L2Decay(
                regularization_coeff=self.weight_decay),
        )
        if cfg.MODEL.FP16:
            if cfg.MODEL.MODEL_NAME in ["pspnet"]:
                custom_black_list = {"pool2d"}
            else:
                custom_black_list = {}
            amp_lists = AutoMixedPrecisionLists(
                custom_black_list=custom_black_list)
            assert isinstance(cfg.MODEL.SCALE_LOSS, float) or isinstance(cfg.MODEL.SCALE_LOSS, str), \
                "data type of MODEL.SCALE_LOSS must be float or str"
            if isinstance(cfg.MODEL.SCALE_LOSS, float):
                optimizer = decorate(optimizer,
                                     amp_lists=amp_lists,
                                     init_loss_scaling=cfg.MODEL.SCALE_LOSS,
                                     use_dynamic_loss_scaling=False)
            else:
                assert cfg.MODEL.SCALE_LOSS.lower() in [
                    'dynamic'
                ], "if MODEL.SCALE_LOSS is a string,\
                 must be set as 'DYNAMIC'!"

                optimizer = decorate(optimizer,
                                     amp_lists=amp_lists,
                                     use_dynamic_loss_scaling=True)

        optimizer.minimize(loss)
        return decayed_lr
Пример #2
0
    def do_training(self, fleet, args):
        """
        begin training.
        Args:
            fleet (Collective): Collective inherited base class Fleet
            args (ArgumentParser): run args to config dist fleet.
        Returns:
            tuple: the value is train losses
        """
        args = parse_args()
        logging.info(args)
        gpu_id = int(os.environ.get('FLAGS_selected_gpus', 4))
        place = fluid.CUDAPlace(gpu_id)
        dev_count = 1
        exe = fluid.Executor(place)
        train_program = fluid.Program()
        startup_program = fluid.Program()
        args.num_trainers = fleet.worker_num()
        args.trainer_id = fleet.worker_index()
        args.run_params = json.loads(args.run_params)
        dist_strategy = DistributedStrategy()
        dist_strategy.enable_inplace = args.run_params['enable_inplace']
        dist_strategy.fuse_all_reduce_ops = args.run_params[
            'fuse_all_reduce_ops']
        dist_strategy.nccl_comm_num = args.run_params['nccl_comm_num']
        dist_strategy.use_local_sgd = args.run_params['use_local_sgd']
        dist_strategy.mode = args.run_params["mode"]
        dist_strategy.collective_mode = args.run_params["collective"]

        with fluid.program_guard(train_program, startup_program):
            with fluid.unique_name.guard():
                sum_cost, avg_cost, predict, token_num, pyreader = transformer(
                    ModelHyperParams.src_vocab_size,
                    ModelHyperParams.trg_vocab_size,
                    ModelHyperParams.max_length + 1,
                    ModelHyperParams.n_layer,
                    ModelHyperParams.n_head,
                    ModelHyperParams.d_key,
                    ModelHyperParams.d_value,
                    ModelHyperParams.d_model,
                    ModelHyperParams.d_inner_hid,
                    ModelHyperParams.prepostprocess_dropout,
                    ModelHyperParams.attention_dropout,
                    ModelHyperParams.relu_dropout,
                    ModelHyperParams.preprocess_cmd,
                    ModelHyperParams.postprocess_cmd,
                    ModelHyperParams.weight_sharing,
                    TrainTaskConfig.label_smooth_eps,
                    ModelHyperParams.bos_idx,
                    use_py_reader=args.use_py_reader,
                    is_test=False)
                optimizer = fluid.optimizer.SGD(0.003)
                if args.run_params["fp16"]:
                    optimizer = decorate(optimizer, init_loss_scaling=64.0)
                optimizer = fleet.distributed_optimizer(optimizer,
                                                        strategy=dist_strategy)
                optimizer.minimize(avg_cost, startup_program)
        train_program = fleet.main_program
        exe.run(startup_program)
        train_data = prepare_data_generator(
            args,
            is_test=False,
            count=dev_count,
            pyreader=pyreader,
            py_reader_provider_wrapper=py_reader_provider_wrapper)

        loss_normalizer = -(
            (1. - TrainTaskConfig.label_smooth_eps) * np.log(
                (1. - TrainTaskConfig.label_smooth_eps)) +
            TrainTaskConfig.label_smooth_eps *
            np.log(TrainTaskConfig.label_smooth_eps /
                   (ModelHyperParams.trg_vocab_size - 1) + 1e-20))

        step_idx = 0
        init_flag = True
        result_loss = []
        result_ppl = []
        train_info = []
        for pass_id in six.moves.xrange(args.num_epochs):
            pass_start_time = time.time()
            if args.use_py_reader:
                pyreader.start()
                data_generator = None
            else:
                data_generator = train_data()
            batch_id = 0
            while True:
                try:
                    feed_dict_list = prepare_feed_dict_list(
                        data_generator, init_flag, dev_count)
                    t1 = time.time()
                    outs = exe.run(program=train_program,
                                   fetch_list=[sum_cost.name, token_num.name]
                                   if step_idx % args.fetch_steps == 0 else [],
                                   feed=feed_dict_list)

                    if step_idx % args.fetch_steps == 0:
                        sum_cost_val, token_num_val = np.array(
                            outs[0]), np.array(outs[1])
                        total_sum_cost = sum_cost_val.sum()
                        total_token_num = token_num_val.sum()
                        total_avg_cost = total_sum_cost / total_token_num
                        result_loss.append(total_avg_cost - loss_normalizer)
                        result_ppl.append(
                            np.exp([min(total_avg_cost, 100)]).item(0))
                        train_info.append(result_loss)
                    init_flag = False
                    batch_id += 1
                    step_idx += 1
                    if batch_id >= 5:
                        break
                except (StopIteration, fluid.core.EOFException):
                    if args.use_py_reader:
                        pyreader.reset()
                    break

            train_info = [round(i, 6) for i in train_info[0]]
            return train_info
Пример #3
0
def train(args):
    """train start"""
    logging.info(args)

    gpu_id = int(os.environ.get('FLAGS_selected_gpus', 0))
    place = fluid.CUDAPlace(gpu_id)
    dev_count = 1

    exe = fluid.Executor(place)

    train_program = fluid.Program()
    startup_program = fluid.Program()

    # For Distributed Training.
    role = role_maker.PaddleCloudRoleMaker(is_collective=True)
    fleet.init(role)
    args.num_trainers = fleet.worker_num()
    args.trainer_id = fleet.worker_index()
    dist_strategy = DistributedStrategy()

    with fluid.program_guard(train_program, startup_program):
        with fluid.unique_name.guard():
            sum_cost, avg_cost, predict, token_num, pyreader = transformer(
                ModelHyperParams.src_vocab_size,
                ModelHyperParams.trg_vocab_size,
                ModelHyperParams.max_length + 1,
                ModelHyperParams.n_layer,
                ModelHyperParams.n_head,
                ModelHyperParams.d_key,
                ModelHyperParams.d_value,
                ModelHyperParams.d_model,
                ModelHyperParams.d_inner_hid,
                ModelHyperParams.prepostprocess_dropout,
                ModelHyperParams.attention_dropout,
                ModelHyperParams.relu_dropout,
                ModelHyperParams.preprocess_cmd,
                ModelHyperParams.postprocess_cmd,
                ModelHyperParams.weight_sharing,
                TrainTaskConfig.label_smooth_eps,
                ModelHyperParams.bos_idx,
                use_py_reader=args.use_py_reader,
                is_test=False)

            optimizer = None
            if args.sync:
                lr_decay = fluid.layers.learning_rate_scheduler.noam_decay(
                    ModelHyperParams.d_model, TrainTaskConfig.warmup_steps)

                with fluid.default_main_program()._lr_schedule_guard():
                    learning_rate = lr_decay * TrainTaskConfig.learning_rate

                optimizer = fluid.optimizer.Adam(learning_rate=learning_rate,
                                                 beta1=TrainTaskConfig.beta1,
                                                 beta2=TrainTaskConfig.beta2,
                                                 epsilon=TrainTaskConfig.eps)
            else:
                optimizer = fluid.optimizer.SGD(0.003)
            if args.use_fp16:
                optimizer = decorate(optimizer,
                                     init_loss_scaling=args.loss_scaling)
            optimizer = fleet.distributed_optimizer(optimizer,
                                                    strategy=dist_strategy)
            optimizer.minimize(avg_cost, startup_program)

    train_program = fleet.main_program
    orig_train_program = fleet._origin_program
    train_loop(args, exe, train_program, orig_train_program, startup_program,
               dev_count, sum_cost, avg_cost, token_num, predict, pyreader)