Пример #1
0
def decode(conv_output, anchors, stride, num_class, conf_thresh):
    conv_shape = P.shape(conv_output)
    batch_size = conv_shape[0]
    n_grid = conv_shape[1]
    anchor_per_scale = len(anchors)
    conv_output = P.reshape(
        conv_output,
        (batch_size, n_grid, n_grid, anchor_per_scale, 5 + num_class))
    conv_raw_dxdy = conv_output[:, :, :, :, 0:2]
    conv_raw_dwdh = conv_output[:, :, :, :, 2:4]
    conv_raw_conf = conv_output[:, :, :, :, 4:5]
    conv_raw_prob = conv_output[:, :, :, :, 5:]

    rows = P.range(0, n_grid, 1, 'float32')
    cols = P.range(0, n_grid, 1, 'float32')
    rows = P.expand(P.reshape(rows, (1, -1, 1)), [n_grid, 1, 1])
    cols = P.expand(P.reshape(cols, (-1, 1, 1)), [1, n_grid, 1])
    offset = P.concat([rows, cols], axis=-1)
    offset = P.reshape(offset, (1, n_grid, n_grid, 1, 2))
    offset = P.expand(offset, [batch_size, 1, 1, anchor_per_scale, 1])

    pred_xy = (P.sigmoid(conv_raw_dxdy) + offset) * stride
    pred_wh = (P.exp(conv_raw_dwdh) * P.assign(anchors))
    pred_xywh = P.concat([pred_xy, pred_wh], axis=-1)
    pred_conf = P.sigmoid(conv_raw_conf)
    pred_prob = P.sigmoid(conv_raw_prob)

    pred_xywh = P.reshape(pred_xywh, (batch_size, -1, 4))  # [-1, -1, 4]
    pred_conf = P.reshape(pred_conf, (batch_size, -1, 1))  # [-1, -1, 1]
    pred_prob = P.reshape(pred_prob,
                          (batch_size, -1, num_class))  # [-1, -1, 80]
    return pred_xywh, pred_conf, pred_prob
Пример #2
0
def lstm_step(x_t, hidden_t_prev, cell_t_prev, size, para_name, args):
    """Util function for pointer network"""

    def linear(inputs, para_name, args):
        return layers.fc(input=inputs,
                         size=size,
                         param_attr=fluid.ParamAttr(name=para_name + '_w'),
                         bias_attr=fluid.ParamAttr(name=para_name + '_b'))

    input_cat = layers.concat([hidden_t_prev, x_t], axis=1)
    forget_gate = layers.sigmoid(x=linear(input_cat, para_name + '_lstm_f',
                                          args))
    input_gate = layers.sigmoid(x=linear(input_cat, para_name + '_lstm_i',
                                         args))
    output_gate = layers.sigmoid(x=linear(input_cat, para_name + '_lstm_o',
                                          args))
    cell_tilde = layers.tanh(x=linear(input_cat, para_name + '_lstm_c', args))

    cell_t = layers.sums(input=[
        layers.elementwise_mul(
            x=forget_gate, y=cell_t_prev), layers.elementwise_mul(
                x=input_gate, y=cell_tilde)
    ])

    hidden_t = layers.elementwise_mul(x=output_gate, y=layers.tanh(x=cell_t))

    return hidden_t, cell_t
Пример #3
0
 def forward(self, input_tensor, cur_state):
     h_cur = cur_state
     x_in = concat([input_tensor, h_cur], axis=1)
     update = sigmoid(self.update_gate(x_in))
     reset = sigmoid(self.reset_gate(x_in))
     x_out = tanh(
         self.out_gate(concat([input_tensor, h_cur * reset], axis=1)))
     h_new = h_cur * (1 - update) + x_out * update
     return h_new
Пример #4
0
 def build_graph(self, mode='train'):
     self._build_data()
     pred = self._build_net()
     if mode == 'train':
         loss, no_grad_set = self._compute_loss(pred)
         pred = layers.sigmoid(pred)
         acc = self._compute_acc(pred)
         return loss, acc, pred, no_grad_set
     else:
         pred = layers.sigmoid(pred)
         return pred
Пример #5
0
    def forward(self, q, k, v, lengths, speaker_embed, start_index, 
                force_monotonic=False, prev_coeffs=None, window=None):
        # add position encoding as an inductive bias 
        if self.has_bias: # multi-speaker model
            omega_q = 2 * F.sigmoid(
                F.squeeze(self.q_pos_affine(speaker_embed), axes=[-1]))
            omega_k = 2 * self.omega_initial * F.sigmoid(F.squeeze(
                self.k_pos_affine(speaker_embed), axes=[-1]))
        else: # single-speaker case
            batch_size = q.shape[0]
            omega_q = F.ones((batch_size, ), dtype="float32")
            omega_k = F.ones((batch_size, ), dtype="float32") * self.omega_default
        q += self.position_encoding_weight * positional_encoding(q, start_index, omega_q)
        k += self.position_encoding_weight * positional_encoding(k, 0, omega_k)

        q, k, v = self.q_affine(q), self.k_affine(k), self.v_affine(v)
        activations = F.matmul(q, k, transpose_y=True)
        activations /= np.sqrt(self.attention_dim)

        if self.training:
            # mask the <pad> parts from the encoder
            mask = F.sequence_mask(lengths, dtype="float32")
            attn_bias = F.scale(1. - mask, -1000)
            activations += F.unsqueeze(attn_bias, [1])
        elif force_monotonic:
            assert window is not None
            backward_step, forward_step = window
            T_enc = k.shape[1]
            batch_size, T_dec, _ = q.shape

            # actually T_dec = 1 here
            alpha = F.fill_constant((batch_size, T_dec), value=0, dtype="int64") \
                   if prev_coeffs is None \
                   else F.argmax(prev_coeffs, axis=-1)
            backward = F.sequence_mask(alpha - backward_step, maxlen=T_enc, dtype="bool")
            forward = F.sequence_mask(alpha + forward_step, maxlen=T_enc, dtype="bool")
            mask = F.cast(F.logical_xor(backward, forward), "float32")
            # print("mask's shape:", mask.shape)
            attn_bias = F.scale(1. - mask, -1000)
            activations += attn_bias

        # softmax
        coefficients = F.softmax(activations, axis=-1)
        # context vector
        coefficients = F.dropout(coefficients, 1. - self.keep_prob,
                                 dropout_implementation='upscale_in_train')
        contexts = F.matmul(coefficients, v)
        # context normalization
        enc_lengths = F.cast(F.unsqueeze(lengths, axes=[1, 2]), "float32")
        contexts *= F.sqrt(enc_lengths)
        # out affine
        contexts = self.out_affine(contexts)
        return contexts, coefficients
Пример #6
0
    def forward(self, input, pre_hidden, pre_cell):
        concat_input_hidden = layers.concat([input, pre_hidden], 1)
        gate_input = layers.matmul(x=concat_input_hidden, y=self._weight)

        gate_input = layers.elementwise_add(gate_input, self._bias)
        i, j, f, o = layers.split(gate_input, num_or_sections=4, dim=-1)
        new_cell = layers.elementwise_add(
            layers.elementwise_mul(
                pre_cell,
                layers.sigmoid(layers.elementwise_add(f, self._forget_bias))),
            layers.elementwise_mul(layers.sigmoid(i), layers.tanh(j)))
        new_hidden = layers.tanh(new_cell) * layers.sigmoid(o)

        return new_hidden, new_cell
Пример #7
0
    def build_program(self, dtype):
        with fluid.program_guard(self.main_program, self.startup_program):
            self.feed_vars = self._prepare_feed_vars([32, 128], dtype, 5)

            tmp_0 = layers.assign(self.feed_vars[0])
            # subgraph with 9 op nodes
            tmp_1 = tmp_0 * layers.sigmoid(self.feed_vars[1]) + layers.sigmoid(
                self.feed_vars[2]) * layers.tanh(self.feed_vars[3])
            tmp_2 = layers.tanh(tmp_1) + layers.sigmoid(self.feed_vars[4])

        self.append_gradients(tmp_2)

        self.num_fused_ops = 2
        self.fetch_list = [tmp_2, self.grad(tmp_0)]
    def build_program(self, dtype):
        with fluid.program_guard(self.main_program, self.startup_program):
            self.feed_vars = self._prepare_feed_vars([32, 64], dtype, 5)

            one = layers.fill_constant(shape=[1], dtype=dtype, value=1.0)
            tmp_0 = one * self.feed_vars[0]
            # subgraph with 9 op nodes
            tmp_1 = tmp_0 * layers.sigmoid(self.feed_vars[1]) + layers.sigmoid(
                self.feed_vars[2]) * layers.tanh(self.feed_vars[3])
            tmp_2 = layers.tanh(tmp_1) + layers.sigmoid(self.feed_vars[4])

        self.append_gradients(tmp_2)

        self.num_fused_ops = 2
        self.fetch_list = [tmp_2, self.grad(tmp_0)]
Пример #9
0
    def _decode(self,
                x,
                y,
                w,
                h,
                anchors,
                stride,
                scale_x_y,
                eps,
                is_gt=False):
        conv_shape = x.shape  # (8, 13, 13, 3)
        batch_size = conv_shape[0]
        n_grid = conv_shape[1]
        anchor_per_scale = conv_shape[3]

        _x = L.unsqueeze(x, 4)
        _y = L.unsqueeze(y, 4)
        conv_raw_dxdy = L.concat([_x, _y], -1)  # (8, 13, 13, 3, 2)
        _w = L.unsqueeze(w, 4)
        _h = L.unsqueeze(h, 4)
        conv_raw_dwdh = L.concat([_w, _h], -1)  # (8, 13, 13, 3, 2)

        rows = L.range(0, n_grid, 1, 'float32')
        cols = L.range(0, n_grid, 1, 'float32')
        rows = L.expand(L.reshape(rows, (1, -1, 1)), [n_grid, 1, 1])
        cols = L.expand(L.reshape(cols, (-1, 1, 1)), [1, n_grid, 1])
        offset = L.concat([rows, cols], axis=-1)
        offset = L.reshape(offset, (1, n_grid, n_grid, 1, 2))
        offset = L.expand(offset, [batch_size, 1, 1, anchor_per_scale, 1])

        if is_gt:
            decode_xy = (conv_raw_dxdy + offset) / n_grid
        else:
            if (abs(scale_x_y - 1.0) < eps):
                decode_xy = L.sigmoid(conv_raw_dxdy)
                decode_xy = (decode_xy + offset) / n_grid
            else:
                # Grid Sensitive
                decode_xy = scale_x_y * L.sigmoid(conv_raw_dxdy) - 0.5 * (
                    scale_x_y - 1.0)
                decode_xy = (decode_xy + offset) / n_grid
        anchor_t = fluid.layers.assign(np.copy(anchors).astype(np.float32))
        decode_wh = (L.exp(conv_raw_dwdh) * anchor_t) / (n_grid * stride)
        decode_xywh = L.concat([decode_xy, decode_wh], axis=-1)
        if is_gt:
            decode_xywh.stop_gradient = True

        return decode_xywh  # (8, 13, 13, 3, 4)
Пример #10
0
    def create_rnn_op(self):
        x = layers.data(shape=[self.sent_len, self.batch_size, self.input_dim],
                        dtype='float32',
                        name='x',
                        append_batch_size=False)
        x.stop_gradient = False
        h_boot = layers.data(shape=[self.input_dim],
                             dtype='float32',
                             name='h_boot')
        h_boot.stop_gradient = False

        rnn = layers.StaticRNN()
        with rnn.step():
            h_pre = rnn.memory(init=h_boot)
            x_t = rnn.step_input(x)

            temp_l = layers.fc(input=x_t,
                               size=self.input_dim,
                               param_attr='W',
                               bias_attr=False)
            temp_r = layers.fc(input=h_pre,
                               size=self.input_dim,
                               param_attr='U',
                               bias_attr=False)

            h = layers.sigmoid(x=layers.elementwise_add(x=temp_l, y=temp_r))

            rnn.update_memory(h_pre, h)
            rnn.output(h)

        return rnn()
Пример #11
0
    def add_input(self, x, condition=None):
        """Add a step input. This method works similarily with `forward` but in a `step-in-step-out` fashion.

        Args:
            x (Variable): shape(B, C_res, T=1), input for a step, dtype float32.
            condition (Variable, optional): shape(B, C_cond, T=1). condition for a step, dtype float32. Defaults to None.

        Returns:
            (residual, skip_connection)
            residual (Variable): shape(B, C_res, T=1), the residual for a step, which is used as the input to the next layer of ResidualBlock.
            skip_connection (Variable): shape(B, C_res, T=1), the skip connection for a step. This output is accumulated with that of other ResidualBlocks. 
        """
        h = x

        # dilated conv
        h = self.conv.add_input(h)

        # condition
        if condition is not None:
            h += self.condition_proj(condition)

        # gated tanh
        content, gate = F.split(h, 2, dim=1)
        z = F.sigmoid(gate) * F.tanh(content)

        # projection
        residual = F.scale(z + x, np.sqrt(0.5))
        skip_connection = z
        return residual, skip_connection
Пример #12
0
    def forward(self, x, speaker_embed=None):
        """
        Args:
            x (Variable): shape(B, C_in, T), dtype float32, the input of Conv1DGLU layer, where B means batch_size, C_in means the input channels T means input time steps.
            speaker_embed (Variable): shape(B, C_sp), dtype float32, speaker embed, where C_sp means speaker embedding size.

        Returns:
            x (Variable): shape(B, C_out, T), the output of Conv1DGLU, where
                C_out means the `num_filters`.
        """
        residual = x
        x = F.dropout(x,
                      self.dropout,
                      dropout_implementation="upscale_in_train")
        x = self.conv(x)
        content, gate = F.split(x, num_or_sections=2, dim=1)

        if speaker_embed is not None:
            sp = F.softsign(self.fc(speaker_embed))
            content = F.elementwise_add(content, sp, axis=0)

        # glu
        x = F.sigmoid(gate) * content

        if self.residual:
            x = F.scale(x + residual, np.sqrt(0.5))
        return x
Пример #13
0
    def add_input(self, x_t, speaker_embed=None):
        """
        Takes a step of inputs and return a step of outputs. It works similarily with the `forward` method, but in a `step-in-step-out` fashion.

        Args:
            x_t (Variable): shape(B, C_in, T=1), dtype float32, the input of Conv1DGLU layer, where B means batch_size, C_in means the input channels.
            speaker_embed (Variable): Shape(B, C_sp), dtype float32, speaker embed, where C_sp means speaker embedding size. 

        Returns:
            x (Variable): shape(B, C_out), the output of Conv1DGLU, where C_out means the `num_filter`.
        """
        residual = x_t
        x_t = F.dropout(x_t,
                        self.dropout,
                        dropout_implementation="upscale_in_train")
        x_t = self.conv.add_input(x_t)
        content_t, gate_t = F.split(x_t, num_or_sections=2, dim=1)

        if speaker_embed is not None:
            sp = F.softsign(self.fc(speaker_embed))
            content_t = F.elementwise_add(content_t, sp, axis=0)

        # glu
        x_t = F.sigmoid(gate_t) * content_t

        if self.residual:
            x_t = F.scale(x_t + residual, np.sqrt(0.5))
        return x_t
Пример #14
0
    def forward(self, input, bias=None, padding=None):
        """
        input: input feature (B, T, C)
        padding: only used when using causal conv, we pad mannually
        """
        input_dropped = F.dropout(input,
                                  1. - self.keep_prob,
                                  dropout_implementation="upscale_in_train")
        if self.causal:
            assert padding is not None
            input_dropped = F.concat([padding, input_dropped], axis=1)
        hidden = self.conv(input_dropped)

        if self.has_bias:
            assert bias is not None
            transformed_bias = F.softsign(self.bias_affine(bias))
            hidden_embedded = hidden + F.unsqueeze(transformed_bias, [1])
        else:
            hidden_embedded = hidden

        # glu
        content, gate = F.split(hidden, num_or_sections=2, dim=-1)
        content = hidden_embedded[:, :, :self.in_channel]
        hidden = F.sigmoid(gate) * content

        # # residual
        hidden = F.scale(input + hidden, math.sqrt(0.5))
        return hidden
Пример #15
0
def link_predict_model(num_nodes,
                       hidden_size=16,
                       name='link_predict_task',
                       binary_op_type="Weighted-L2"):
    pyreader = l.py_reader(capacity=70,
                           shapes=[[-1, 1], [-1, 1], [-1, 1]],
                           dtypes=['int64', 'int64', 'int64'],
                           lod_levels=[0, 0, 0],
                           name=name + '_pyreader',
                           use_double_buffer=True)
    u, v, label = l.read_file(pyreader)
    u_embed = l.embedding(input=u,
                          size=[num_nodes, hidden_size],
                          param_attr=fluid.ParamAttr(name='content'))
    v_embed = l.embedding(input=v,
                          size=[num_nodes, hidden_size],
                          param_attr=fluid.ParamAttr(name='content'))
    u_embed.stop_gradient = True
    v_embed.stop_gradient = True

    edge_embed = binary_op(u_embed, v_embed, binary_op_type)
    logit = l.fc(input=edge_embed, size=1)
    loss = l.sigmoid_cross_entropy_with_logits(logit, l.cast(label, 'float32'))
    loss = l.reduce_mean(loss)

    prob = l.sigmoid(logit)
    return pyreader, loss, prob, label
Пример #16
0
 def test_sigmoid(self):
     program = Program()
     with program_guard(program):
         input = layers.data(name="input", shape=[16], dtype="float32")
         out = layers.sigmoid(input, name='sigmoid')
         self.assertIsNotNone(out)
     print(str(program))
Пример #17
0
    def forward(self, x, condition=None):
        """Conv1D gated-tanh Block.

        Args:
            x (Variable): shape(B, C_res, T), the input. (B stands for batch_size, C_res stands for residual channels, T stands for time steps.) dtype float32.
            condition (Variable, optional): shape(B, C_cond, T), the condition, it has been upsampled in time steps, so it has the same time steps as the input does.(C_cond stands for the condition's channels). Defaults to None.

        Returns:
            (residual, skip_connection)
            residual (Variable): shape(B, C_res, T), the residual, which is used as the input to the next layer of ResidualBlock.
            skip_connection (Variable): shape(B, C_res, T), the skip connection. This output is accumulated with that of other ResidualBlocks. 
        """
        time_steps = x.shape[-1]
        h = x

        # dilated conv
        h = self.conv(h)
        if h.shape[-1] != time_steps:
            h = h[:, :, :time_steps]

        # condition
        if condition is not None:
            h += self.condition_proj(condition)

        # gated tanh
        content, gate = F.split(h, 2, dim=1)
        z = F.sigmoid(gate) * F.tanh(content)

        # projection
        residual = F.scale(z + x, math.sqrt(.5))
        skip_connection = z
        return residual, skip_connection
Пример #18
0
def create_model(args, config, graph_label):
    """Create model for given model configuration."""
    logging.info('building model')
    graph_wrapper = GraphWrapper(name="graph",
                                 node_feat=[('atom_type', [None, 1], "int64"),
                                            ('chirality_tag', [None,
                                                               1], "int64")],
                                 edge_feat=[('bond_type', [None, 1], "int64"),
                                            ('bond_direction', [None,
                                                                1], "int64")])

    encoder = GINEncoder(config)
    global_repr, patch_summary = encoder.forward(graph_wrapper)

    hid = L.fc(global_repr,
               config['hidden_size'],
               act='relu',
               name='finetune_fc1')
    hid = L.fc(hid, config['hidden_size'], act='relu', name='finetune_fc2')

    logits = L.fc(global_repr, args.num_tasks, name="finetune_fc3")
    loss = L.sigmoid_cross_entropy_with_logits(x=logits, label=graph_label)
    loss = L.reduce_mean(loss)
    pred = L.sigmoid(logits)

    keys = ['loss', 'graph_wrapper', 'encoder', 'graph_emb', 'pred']
    Agent = namedtuple('Agent', keys)
    return Agent(loss=loss,
                 graph_wrapper=graph_wrapper,
                 encoder=encoder,
                 graph_emb=global_repr,
                 pred=pred)
def decoder_step(gru_unit,
                 cue_gru_unit,
                 step_in,
                 hidden,
                 input_size,
                 hidden_size,
                 memory,
                 memory_mask,
                 knowledge,
                 mask=None):
    """ decoder step """
    # get attention out
    # get hidden top layers
    top_hidden = layers.slice(hidden, axes=[0], starts=[0], ends=[1])
    top_hidden = layers.squeeze(top_hidden, axes=[0])
    top_hidden = layers.unsqueeze(top_hidden, axes=[1])

    weight_memory, attn = dot_attention(top_hidden, memory, memory_mask)

    step_in = layers.unsqueeze(step_in, axes=[1])
    rnn_input_list = [step_in, weight_memory]
    if weight_memory.shape[0] == -1:
        knowledge_1 = layers.reshape(knowledge, shape=weight_memory.shape)
    else:
        knowledge_1 = knowledge
    cue_input_list = [knowledge_1, weight_memory]
    output_list = [weight_memory]

    rnn_input = layers.concat(rnn_input_list, axis=2)

    rnn_input = layers.squeeze(rnn_input, axes=[1])
    rnn_output, rnn_last_hidden = gru_unit(rnn_input, hidden, mask)

    cue_input = layers.concat(cue_input_list, axis=2)
    cue_input = layers.squeeze(cue_input, axes=[1])
    cue_rnn_out, cue_rnn_last_hidden = cue_gru_unit(cue_input, hidden, mask)

    h_y = layers.tanh(
        fc(rnn_last_hidden, hidden_size, hidden_size, name="dec_fc1"))
    h_cue = layers.tanh(
        fc(cue_rnn_last_hidden, hidden_size, hidden_size, name="dec_fc2"))

    concate_y_cue = layers.concat([h_y, h_cue], axis=2)
    k = layers.sigmoid(fc(concate_y_cue, hidden_size * 2, 1, name='dec_fc3'))

    new_hidden = h_y * k - h_cue * (k - 1.0)

    new_hidden_tmp = layers.transpose(new_hidden, perm=[1, 0, 2])
    output_list.append(new_hidden_tmp)

    real_out = layers.concat(output_list, axis=2)

    if mask:
        mask_tmp = layers.unsqueeze(mask, axes=[0])
        new_hidden = layers.elementwise_mul((new_hidden - hidden),
                                            mask_tmp,
                                            axis=0)
        new_hidden += hidden

    return real_out, new_hidden
Пример #20
0
    def forward(self, features, im_info):
        # features: p6 -> p2
        pred_objectness_logits, pred_anchor_deltas = self.rpn_head(features)

        rpn_rois = []
        rpn_roi_probs = []  # p2 -> p6
        for lvl in range(self.k_min, self.k_max + 1):  # 2 -> 6
            lvl_anchors = generate_anchors(
                stride=2.**lvl,
                sizes=[self.anchor_size[0] * 2.**(lvl - self.k_min)],
                aspect_ratios=self.anchor_aspect_ratios)
            lvl_cls_logits = pred_objectness_logits[self.k_max - lvl]
            lvl_cls_logits = L.sigmoid(lvl_cls_logits).numpy()
            lvl_bbox_deltas = pred_anchor_deltas[self.k_max - lvl].numpy()

            lvl_rois, lvl_roi_probs, lvl_anchors = self.generate_proposal_op(
                lvl_cls_logits, lvl_bbox_deltas, lvl_anchors, 1 / 2**lvl,
                im_info)
            rpn_rois.append(lvl_rois)
            rpn_roi_probs.append(lvl_roi_probs)

        rois = self.collect_and_distribute_op(rpn_rois, rpn_roi_probs)

        # list of ndarray(size: (n, 5)), p2 -> p5
        return rois
Пример #21
0
 def _compute_pc(self, x, mask):
     if mask is not None:
         x -= (1 - mask) * 1e10
     x = layers.reduce_max(x, dim=1, keep_dim=True)
     x = layers.relu(self.pc_fc1(x))
     x = layers.sigmoid(self.pc_fc2(x))
     return x
Пример #22
0
def appnp(gw, feature, alpha=0.2, k_hop=10, name=""):
    """Implementation of APPNP of "Predict then Propagate: Graph Neural Networks
    meet Personalized PageRank"  (ICLR 2019). 
    Args:
        gw: Graph wrapper object (:code:`StaticGraphWrapper` or :code:`GraphWrapper`)
        feature: A tensor with shape (num_nodes, feature_size).
        edge_dropout: Edge dropout rate.
        k_hop: K Steps for Propagation
    Return:
        A tensor with shape (num_nodes, hidden_size)
    """
    def send_src_copy(src_feat, dst_feat, edge_feat):
        feature = src_feat["h"]
        return feature

    def get_norm(indegree):
        float_degree = L.cast(indegree, dtype="float32")
        float_degree = L.clamp(float_degree, min=1.0)
        norm = L.pow(float_degree, factor=-0.5)
        return norm

    cks = []
    h0 = feature
    ngw = gw
    norm = get_norm(ngw.indegree())

    for i in range(k_hop):

        feature = feature * norm
        msg = gw.send(send_src_copy, nfeat_list=[("h", feature)])
        feature = gw.recv(msg, "sum")
        feature = feature * norm
        #feature = feature * (1 - alpha) + h0 * alpha

        fan_in = feature.shape[-1] * 3
        bias_bound = 1.0 / math.sqrt(fan_in)
        fc_bias_attr = F.ParamAttr(
            initializer=F.initializer.UniformInitializer(low=-bias_bound,
                                                         high=bias_bound))

        negative_slope = math.sqrt(5)
        gain = math.sqrt(2.0 / (1 + negative_slope**2))
        std = gain / math.sqrt(fan_in)
        weight_bound = math.sqrt(3.0) * std
        fc_w_attr = F.ParamAttr(initializer=F.initializer.UniformInitializer(
            low=-weight_bound, high=weight_bound))

        gate_f = L.fc([feature, h0, feature - h0],
                      1,
                      param_attr=fc_w_attr,
                      name=name + 'appnp_gate_' + str(i),
                      bias_attr=fc_bias_attr)

        alpha = L.sigmoid(gate_f)
        feature = feature * (1 - alpha) + h0 * alpha

        if (i + 1) % 3 == 0:
            cks.append(feature)
    return feature, cks
    def gru_step(self, input, hidden, mask=None):
        """ gru step """
        hidden_array = []
        for i in range(self.num_layers):
            hidden_temp = layers.slice(hidden,
                                       axes=[0],
                                       starts=[i],
                                       ends=[i + 1])
            hidden_temp = layers.reshape(hidden_temp,
                                         shape=[-1, self.hidden_size])
            hidden_array.append(hidden_temp)

        last_hidden_array = []
        for k in range(self.num_layers):
            trans_input = layers.matmul(input, self.weight_input_array[k])
            trans_input += self.bias_input_array[k]
            trans_hidden = layers.matmul(hidden_array[k],
                                         self.weight_hidden_array[k])
            trans_hidden += self.bias_hidden_array[k]

            input_array = layers.split(trans_input, num_or_sections=3, dim=-1)
            trans_array = layers.split(trans_hidden, num_or_sections=3, dim=-1)

            reset_gate = layers.sigmoid(input_array[0] + trans_array[0])
            input_gate = layers.sigmoid(input_array[1] + trans_array[1])
            new_gate = layers.tanh(input_array[2] +
                                   reset_gate * trans_array[2])

            new_hidden = new_gate + input_gate * (hidden_array[k] - new_gate)

            if mask:
                neg_mask = layers.fill_constant_batch_size_like(
                    input=mask, shape=[1], value=1.0, dtype='float32') - mask
                new_hidden = new_hidden * mask + hidden_array[k] * neg_mask

            last_hidden_array.append(new_hidden)
            input = new_hidden

            if self.dropout and self.dropout > 0.0:
                input = layers.dropout(input, dropout_prob=self.dropout)

        last_hidden = layers.concat(last_hidden_array, 0)
        last_hidden = layers.reshape(
            last_hidden, shape=[self.num_layers, -1, self.hidden_size])

        return input, last_hidden
Пример #24
0
 def inference(self):
     """
     Used for inference with labels.
     """
     graph_wrapper, logits = self.forward(is_test=True)
     pred = layers.sigmoid(logits)
     self.graph_wrapper = graph_wrapper
     self.pred = pred
Пример #25
0
    def forward(self, input, state):
        #logging.info("input shape: {}".format(input.shape))
        pre_hidden, pre_cell = state
        #logging.info("pre hidden shape: {}".format(pre_hidden.shape))
        #logging.info("pre cell shape: {}".format(pre_cell.shape))
        # i,f,c,o 四个值均有Wx+Wh+b 即W(x+h)+b
        # 因此:
        # 实际相乘为[x, b]·W+b
        # x,b 横向相连, shape为[batch_size, input_size+hidden_size]
        # W的shape为[input_size+hidden_size, 4*hidden_size]
        # b的shape为[4*hidden_size,]

        # 横向连接
        # shape: [batch_size, input_size+hidden_size]
        concat_input_hidden = L.concat([input, pre_hidden], axis=1)
        #logging.info("x concat h shape: {}".format(concat_input_hidden.shape))

        # 计算Wx+Wh+b
        # shape: [batch_size, 4*hidden_size]
        gate_input = L.matmul(x=concat_input_hidden, y=self._weight)
        #logging.info("[x, b]·W shape: {}".format(gate_input.shape))

        # shape: [batch_size, 4*hidden_size]
        gate_input = L.elementwise_add(gate_input, self._bias)
        #logging.info("[x, b]·W+b shape: {}".format(gate_input.shape))

        # i,f,c,o四值按最后一维分开 因此每个的最后一维都是hidden_size
        i, f, c, o = L.split(gate_input, num_or_sections=4, dim=-1)

        # new_c = pre_c·sigmoid(f+forget_bias) + sigmoid(i)·tanh(c)
        # shape: [batch_size, hidden_size]
        new_cell = L.elementwise_add(
            L.elementwise_mul(
                pre_cell,
                L.sigmoid(L.elementwise_add(f, self._forget_bias))),
            L.elementwise_mul(L.sigmoid(i), L.tanh(c))
            )
        #logging.info("new_cell shape: {}".format(new_cell.shape))

        # new_h = tanh(new_c)*sigmoid(o)
        # shape: [batch_size, hidden_size]
        new_hidden = L.tanh(new_cell) * L.sigmoid(o)
        #logging.info("new_hidden shape: {}".format(new_hidden.shape))

        return new_hidden, [new_hidden, new_cell]
Пример #26
0
def act(a, act='tanh'):
    if act == 'tanh':
        return layers.tanh(a)
    elif act == 'sigmoid':
        return layers.sigmoid(a)
    elif act == 'relu':
        return layers.relu(a)
    else:
        return a
Пример #27
0
    def forward(self, t, k, pn1, pn2, mask=None):
        pc = self._compute_pc(t, mask)

        k = get_k_inter(t, k)
        k = layers.expand(k, [1, t.shape[1], 1])

        h = self.multi_head_attn(t, mask=mask)
        h = layers.concat([t, h, k], axis=-1)
        h = self.conv1d(h)

        po = layers.sigmoid(self.po_fc(h))
        po1 = layers.sigmoid(self.po1_fc(h))
        po2 = layers.sigmoid(self.po2_fc(h))

        po1 = po * po1 * pc * pn1
        po2 = po * po2 * pc * pn2

        return po1, po2
Пример #28
0
    def _split_ioup(self, output, an_num, num_classes):
        """
        Split output feature map to output, predicted iou
        along channel dimension
        """
        ioup = output[:, :an_num, :, :]
        ioup = L.sigmoid(ioup)

        oriout = output[:, an_num:, :, :]
        return (ioup, oriout)
Пример #29
0
    def lstm_step(x_t, hidden_t_prev, cell_t_prev, size):
	def linear(inputs):
	    return layers.fc(input=inputs, size=size, bias_attr=True)

	forget_gate = layers.sigmoid(x=linear([hidden_t_prev, x_t]))
	input_gate = layers.sigmoid(x=linear([hidden_t_prev, x_t]))
	output_gate = layers.sigmoid(x=linear([hidden_t_prev, x_t]))
	cell_tilde = layers.tanh(x=linear([hidden_t_prev, x_t]))

	cell_t = layers.sums(input=[
	    layers.elementwise_mul(
		x=forget_gate, y=cell_t_prev), layers.elementwise_mul(
		    x=input_gate, y=cell_tilde)
	])

	hidden_t = layers.elementwise_mul(
	    x=output_gate, y=layers.tanh(x=cell_t))

	return hidden_t, cell_t 
Пример #30
0
    def build_model(self):
        node_features = self.graph_wrapper.node_feat["feat"]

        output = self.gcn(gw=self.graph_wrapper,
                          feature=node_features,
                          hidden_size=self.hidden_size,
                          activation="relu",
                          norm=self.graph_wrapper.node_feat["norm"],
                          name="gcn_layer_1")
        output1 = output
        output = self.gcn(gw=self.graph_wrapper,
                          feature=output,
                          hidden_size=self.hidden_size,
                          activation="relu",
                          norm=self.graph_wrapper.node_feat["norm"],
                          name="gcn_layer_2")
        output2 = output
        output = self.gcn(gw=self.graph_wrapper,
                          feature=output,
                          hidden_size=self.hidden_size,
                          activation="relu",
                          norm=self.graph_wrapper.node_feat["norm"],
                          name="gcn_layer_3")

        output = L.concat(input=[output1, output2, output], axis=-1)

        output, ratio_length = sag_pool(gw=self.graph_wrapper,
                                        feature=output,
                                        ratio=self.pooling_ratio,
                                        graph_id=self.graph_id,
                                        dataset=self.args.dataset_name,
                                        name="sag_pool_1")
        output = L.lod_reset(output, self.graph_wrapper.graph_lod)
        cat1 = L.sequence_pool(output, "sum")
        ratio_length = L.cast(ratio_length, dtype="float32")
        cat1 = L.elementwise_div(cat1, ratio_length, axis=-1)
        cat2 = L.sequence_pool(output, "max")
        output = L.concat(input=[cat2, cat1], axis=-1)

        output = L.fc(output, size=self.hidden_size, act="relu")
        output = L.dropout(output, dropout_prob=self.dropout_ratio)
        output = L.fc(output, size=self.hidden_size // 2, act="relu")
        output = L.fc(output,
                      size=self.num_classes,
                      act=None,
                      param_attr=fluid.ParamAttr(name="final_fc"))

        self.labels = L.cast(self.labels, dtype="float32")
        loss = L.sigmoid_cross_entropy_with_logits(x=output, label=self.labels)
        self.loss = L.mean(loss)
        pred = L.sigmoid(output)
        self.pred = L.argmax(x=pred, axis=-1)
        correct = L.equal(self.pred, self.labels_1dim)
        correct = L.cast(correct, dtype="int32")
        self.correct = L.reduce_sum(correct)
Пример #31
0
    def create_rnn_op(self):
        x = layers.data(
            shape=[self.sent_len, self.batch_size, self.input_dim],
            dtype='float32',
            name='x',
            append_batch_size=False,
            **self.p_info)
        x.stop_gradient = False
        h_boot = layers.data(
            shape=[self.input_dim],
            dtype='float32',
            name='h_boot',
            **self.p_info)
        h_boot.stop_gradient = False

        rnn = layers.StaticRNN(main_program=self.main_program)
        with rnn.step():
            h_pre = rnn.memory(init=h_boot)
            x_t = rnn.step_input(x)

            temp_l = layers.fc(input=x_t,
                               size=self.input_dim,
                               param_attr='W',
                               bias_attr=False,
                               **self.p_info)
            temp_r = layers.fc(input=h_pre,
                               size=self.input_dim,
                               param_attr='U',
                               bias_attr=False,
                               **self.p_info)

            h = layers.sigmoid(
                x=layers.elementwise_add(
                    x=temp_l, y=temp_r, **self.p_info),
                **self.p_info)

            rnn.update_memory(h_pre, h)
            rnn.output(h)

        return rnn()