def run_main_with_place(self, places, use_compiled_program=True):
        with fluid.scope_guard(fluid.Scope()):
            with fluid.program_guard(fluid.Program(), fluid.Program()):
                input_data, loss, loader = self.build_network(places)
                fetch_list = [input_data]

                exe = fluid.Executor(places[0])
                exe.run(fluid.default_startup_program())

                dev_cnt = len(places)
                if dev_cnt > 1:
                    self.assertTrue(use_compiled_program)

                main_program = fluid.default_main_program()
                if use_compiled_program:
                    main_program = fluid.CompiledProgram(
                        main_program).with_data_parallel(
                            loss_name=loss.name, places=places)

                max_batch_num = min(self.break_num,
                                    int(self.batch_num / dev_cnt))

                if loader.iterable:
                    early_break = False
                    for epoch_id in six.moves.range(self.epoch_num):
                        early_break = False
                        self.clear_visited()
                        batch_id = 0
                        for data in loader():
                            if batch_id >= self.break_num:
                                early_break = True
                                break
                            self.assertInputData(
                                batch_id, data, dev_cnt, check_visited=False)
                            fetch_val, = exe.run(program=main_program,
                                                 feed=data,
                                                 fetch_list=fetch_list)
                            self.assertInputData(batch_id, fetch_val, dev_cnt)
                            batch_id += 1

                        if dev_cnt == 1:
                            self.assertEqual(batch_id, max_batch_num)
                        else:
                            self.assertLessEqual(batch_id, max_batch_num)

                    if early_break:
                        loader._reset()
                else:
                    for epoch_id in six.moves.range(self.epoch_num):
                        batch_id = 0
                        self.clear_visited()
                        loader.start()
                        try:
                            while True:
                                if batch_id >= self.break_num:
                                    loader.reset()
                                    break
                                fetch_val, = exe.run(program=main_program,
                                                     fetch_list=fetch_list)
                                self.assertInputData(batch_id, fetch_val,
                                                     dev_cnt)
                                batch_id += 1
                        except fluid.core.EOFException:
                            loader.reset()

                        if dev_cnt == 1:
                            self.assertEqual(batch_id, max_batch_num)
                        else:
                            self.assertLessEqual(batch_id, max_batch_num)
Пример #2
0
 def run_func_with_guard(self, func):
     with fluid.program_guard(fluid.Program(), fluid.Program()):
         with fluid.unique_name.guard():
             with fluid.scope_guard(fluid.Scope()):
                 func()
    def test_pslib_2(self):
        """Test cases for pslib."""
        import paddle.fluid as fluid
        from paddle.fluid.incubate.fleet.parameter_server.distribute_transpiler import fleet
        from paddle.fluid.incubate.fleet.base.role_maker import GeneralRoleMaker
        from paddle.fluid.incubate.fleet.base.role_maker import RoleMakerBase

        os.environ["POD_IP"] = "127.0.0.1"
        os.environ["PADDLE_PORT"] = "36001"
        os.environ["TRAINING_ROLE"] = "TRAINER"
        os.environ["PADDLE_TRAINER_ENDPOINTS"] = "127.0.0.1:36001"
        os.environ["PADDLE_PSERVERS_IP_PORT_LIST"] = "127.0.0.1:36002"
        os.environ["PADDLE_TRAINER_ID"] = "0"
        os.environ["PADDLE_TRAINERS_NUM"] = "1"
        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        try:
            fleet.init(None)
        except:
            print("no mpi4py, skip test_pslib_2")
            return
        train_program = fluid.Program()
        startup_program = fluid.Program()
        scope = fluid.Scope()
        with fluid.program_guard(train_program, startup_program):
            show = fluid.layers.data(name="show", shape=[-1, 1], \
                                     dtype="float32", lod_level=1, append_batch_size=False)
            fc = fluid.layers.fc(input=show, size=1, act=None)
            label = fluid.layers.data(name="click", shape=[-1, 1], \
                                      dtype="int64", lod_level=1, append_batch_size=False)
            label_cast = fluid.layers.cast(label, dtype='float32')
            cost = fluid.layers.log_loss(fc, label_cast)
        try:
            adam = fluid.optimizer.Adam(learning_rate=0.000005)
            adam = fleet.distributed_optimizer(adam)
            adam.minimize([cost], [scope])
            fleet.run_server()
        except:
            print("do not support pslib test, skip")
            return
        os.environ["TRAINING_ROLE"] = "wrong"
        try:
            role1 = GeneralRoleMaker(path="./test_gloo_1")
            role1.generate_role()
        except:
            print("catch expected error of wrong TRAINING_ROLE")
        os.environ["TRAINING_ROLE"] = "PSERVER"
        os.environ["PADDLE_PSERVERS_IP_PORT_LIST"] = "127.0.0.1:36001"
        role2 = GeneralRoleMaker(path="./test_gloo_2")
        role2._finalize()
        role2._all_gather(1)
        role2._all_gather(1)
        role2._barrier_server()
        role2._all_gather(1)
        role3 = GeneralRoleMaker(path="./test_gloo_3")
        role3._worker_gather(1)
        role3._worker_gather(1)
        os.environ["TRAINING_ROLE"] = "TRAINER"
        os.environ["PADDLE_PSERVERS_IP_PORT_LIST"] = "127.0.0.1:36002"
        role4 = GeneralRoleMaker(path="./test_gloo_4")
        role4._worker_gather(1)
        role4._get_rank()
        role4._get_size()
        role4._all_comm.init()
        role5 = GeneralRoleMaker(path="./test_gloo_5")
        role5.get_local_endpoint()
        role5.get_local_endpoint()
        role6 = GeneralRoleMaker(path="./test_gloo_6")
        role6.get_trainer_endpoints()
        role6.get_trainer_endpoints()
        role7 = GeneralRoleMaker(path="./test_gloo_7")
        role7.get_pserver_endpoints()
        role7.get_pserver_endpoints()
        role8 = GeneralRoleMaker(path="./test_gloo_8")
        role8.is_worker()
        role8.is_worker()
        role9 = GeneralRoleMaker(path="./test_gloo_9")
        role9.is_server()
        role9.is_server()
        role10 = GeneralRoleMaker(path="./test_gloo_10")
        role10.is_first_worker()
        role10.is_first_worker()
        role11 = GeneralRoleMaker(path="./test_gloo_11")
        role11.worker_index()
        role11.worker_index()
        role12 = GeneralRoleMaker(path="./test_gloo_12")
        role12.server_index()
        role12.server_index()
        role13 = GeneralRoleMaker(path="./test_gloo_13")
        role13.worker_num()
        role13.worker_num()
        role14 = GeneralRoleMaker(path="./test_gloo_14")
        role14.server_num()
        role14.server_num()
        role15 = GeneralRoleMaker(path="./test_gloo_15")
        role15._barrier_worker()
        role15._barrier_worker()
        role16 = GeneralRoleMaker(path="./test_gloo_16")
        role16._barrier_all()
        role16._barrier_all()
        role17 = GeneralRoleMaker(path="./test_gloo_17")
        role17._barrier_server()
        role17._barrier_server()
        role18 = GeneralRoleMaker(path="./test_gloo_18")
        role18._worker_num()
        role18._worker_num()
        role19 = GeneralRoleMaker(path="./test_gloo_19")
        role19._server_num()
        role19._server_num()
        role20 = GeneralRoleMaker(path="./test_gloo_20")
        a = [1]
        b = [0]
        role20._all_reduce(a, b)
        role21 = GeneralRoleMaker(path="./test_gloo_21")
        role21.all_reduce_worker([], [])
        role21.all_reduce_worker([], [])
        role21.barrier_worker()
        role21.barrier_all()
        role22 = GeneralRoleMaker(path="./test_gloo_22")
        role22._get_rank()
        role22._get_rank()
        os.environ["PADDLE_PSERVER_ID"] = "0"
        role23 = GeneralRoleMaker(path="./test_gloo_23")
        role23._get_size()
        role23._get_size()
        with open("test_fleet_gloo_role_maker_1.txt", "w") as f:
            data = "1 1 1 1\n"
            f.write(data)

        dataset = paddle.distributed.InMemoryDataset()
        dataset.set_filelist(["test_fleet_gloo_role_maker_1.txt"])
        dataset._set_use_var([show, label])
        dataset.load_into_memory()
        dataset.get_memory_data_size(fleet)
        dataset.get_shuffle_data_size(fleet)
        os.remove("./test_fleet_gloo_role_maker_1.txt")

        class TmpClass():
            """
            dummy tmp class
            """
            def __init__(self):
                pass

            def all_reduce_worker(self, input, output):
                """
                dummy all reduce worker

                Args:
                    input(None): fake input
                    output(None): fale output
                """
                pass

            def barrier_worker(self):
                """
                dummy barrier worker
                """
                pass

        from paddle.fluid.incubate.fleet.base.fleet_base import Fleet

        class TmpFleet(Fleet):
            """
            dummy tmp fleet
            """
            def __init__(self):
                super(TmpFleet, self).__init__()
                self._role_maker = None

            def init_worker(self):
                """
                dummy init worker
                """
                pass

            def init_server(self, model_dir=None):
                """
                dummy init server

                Args:
                    model_dir(None): fake model_dir
                """
                pass

            def run_server(self):
                """
                dummy run server
                """
                pass

            def stop_worker(self):
                """
                dummy stop worker
                """
                pass

            def distributed_optimizer(self, optimizer, strategy=None):
                """
                dummy distributed optimizer

                Args:
                    optimizer(None): fake optimizer
                    strategy(None): fake strategy
                """
                pass

            def save_inference_model(self):
                """
                dummy save inference model
                """
                pass

            def save_persistables(self):
                """
                dummy save persistables
                """
                pass

        os.environ["TRAINING_ROLE"] = "TRAINER"
        tmp = TmpFleet()
        tmp._role_maker = TmpClass()
        tmp.all_reduce_worker([], [])
        tmp.barrier_worker()
        from paddle.fluid.incubate.fleet.base.role_maker import GeneralRoleMaker
        tmp = RoleMakerBase()
        tmp.all_gather(1)
        tmp.all_reduce_worker([], [])
        tmp.barrier_worker()
        tmp.barrier_all()
        from paddle.fluid.incubate.fleet.base.role_maker import \
            MPISymetricRoleMaker
        tmp1 = MPISymetricRoleMaker()
        tmp1.all_gather(1)
        tmp1.all_gather(1)
        tmp2 = MPISymetricRoleMaker()
        tmp2.all_reduce_worker([], [])
        tmp3 = MPISymetricRoleMaker()
        tmp3.barrier_worker()
        tmp3.barrier_worker()
        tmp4 = MPISymetricRoleMaker()
        tmp4.barrier_all()
        tmp4.barrier_all()
Пример #4
0
    def build_network(self, context):
        context["model"] = {}
        if len(context["env"]["phase"]) > 1:
            warnings.warn("Cluster Train Only Support One Phase.",
                          category=UserWarning,
                          stacklevel=2)
        model_dict = context["env"]["phase"][0]
        train_program = fluid.Program()
        startup_program = fluid.Program()
        scope = fluid.Scope()
        dataset_name = model_dict["dataset_name"]

        with fluid.program_guard(train_program, startup_program):
            with fluid.unique_name.guard():
                with fluid.scope_guard(scope):
                    context["model"][model_dict["name"]] = {}
                    model_path = envs.os_path_adapter(
                        envs.workspace_adapter(model_dict["model"]))
                    model = envs.lazy_instance_by_fliename(
                        model_path, "Model")(context["env"])
                    model._data_var = model.input_data(
                        dataset_name=model_dict["dataset_name"])
                    if envs.get_global_env("dataset." + dataset_name +
                                           ".type") == "DataLoader":
                        model._init_dataloader(is_infer=False)
                    model.net(model._data_var, False)
                    optimizer = model.optimizer()

                    optimizer = context["fleet"].distributed_optimizer(
                        optimizer)
                    optimizer.minimize([model._cost], [fluid.global_scope()])

                    context["model"][
                        model_dict["name"]]["main_program"] = train_program
                    context["model"][model_dict["name"]][
                        "startup_program"] = startup_program
                    context["model"][model_dict["name"]]["scope"] = scope
                    context["model"][model_dict["name"]]["model"] = model
                    context["model"][model_dict["name"]][
                        "default_main_program"] = train_program.clone()
                    context["model"][
                        model_dict["name"]]["compile_program"] = None

        if context["fleet"].is_server():
            self._server(context)
        else:
            context["dataset"] = {}
            for phase in context["env"]["phase"]:
                type = envs.get_global_env("dataset." + dataset["name"] +
                                           ".type")
                if type == "DataLoader":
                    data_loader = DataLoader(context)
                    data_loader.get_dataloader(
                        context, dataset_name, context["model"][
                            model_dict["name"]]["model"]._data_loader)
                elif type == "QueueDataset":
                    dataset_class = QueueDataset(context)
                    context["dataset"][
                        dataset["name"]] = dataset_class.create_dataset(
                            dataset["name"], context)
            context["status"] = "startup_pass"
Пример #5
0
    def freeze_graph(self,
                     use_cuda,
                     seed,
                     activation_quant_type,
                     bias_correction=False,
                     weight_quant_type='abs_max',
                     for_ci=True,
                     quant_skip_pattern='skip_quant'):
        def build_program(main, startup, is_test):
            main.random_seed = seed
            startup.random_seed = seed
            with fluid.unique_name.guard():
                with fluid.program_guard(main, startup):
                    img = fluid.layers.data(
                        name='image', shape=[1, 28, 28], dtype='float32')
                    label = fluid.layers.data(
                        name='label', shape=[1], dtype='int64')
                    loss = conv_net(img, label, quant_skip_pattern)
                    if not is_test:
                        opt = fluid.optimizer.Adam(learning_rate=0.001)
                        opt.minimize(loss)
            return [img, label], loss

        random.seed(0)
        np.random.seed(0)

        main = fluid.Program()
        startup = fluid.Program()
        test_program = fluid.Program()
        feeds, loss = build_program(main, startup, False)
        build_program(test_program, startup, True)
        test_program = test_program.clone(for_test=True)
        main_graph = IrGraph(core.Graph(main.desc), for_test=False)
        test_graph = IrGraph(core.Graph(test_program.desc), for_test=True)

        place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
        exe = fluid.Executor(place)
        scope = fluid.Scope()
        with fluid.scope_guard(scope):
            exe.run(startup)
        transform_pass = QuantizationTransformPass(
            scope=scope,
            place=place,
            activation_quantize_type=activation_quant_type,
            weight_quantize_type=weight_quant_type,
            skip_pattern=quant_skip_pattern)
        transform_pass.apply(main_graph)
        transform_pass.apply(test_graph)
        dev_name = '_gpu_' if use_cuda else '_cpu_'
        if not for_ci:
            marked_nodes = set()
            for op in main_graph.all_op_nodes():
                if op.name().find('quantize') > -1:
                    marked_nodes.add(op)
            main_graph.draw('.', 'main' + dev_name + activation_quant_type + '_'
                            + weight_quant_type, marked_nodes)
            marked_nodes = set()
            for op in test_graph.all_op_nodes():
                if op.name().find('quantize') > -1:
                    marked_nodes.add(op)
            test_graph.draw('.', 'test' + dev_name + activation_quant_type + '_'
                            + weight_quant_type, marked_nodes)

        build_strategy = fluid.BuildStrategy()
        build_strategy.memory_optimize = False
        build_strategy.enable_inplace = False
        build_strategy.fuse_all_reduce_ops = False
        binary = fluid.CompiledProgram(main_graph.graph).with_data_parallel(
            loss_name=loss.name, build_strategy=build_strategy)
        quantized_test_program = test_graph.to_program()
        iters = 5
        batch_size = 8

        train_reader = paddle.batch(
            paddle.reader.shuffle(
                paddle.dataset.mnist.train(), buf_size=500),
            batch_size=batch_size)
        test_reader = paddle.batch(
            paddle.dataset.mnist.test(), batch_size=batch_size)
        feeder = fluid.DataFeeder(feed_list=feeds, place=place)
        with fluid.scope_guard(scope):
            for _ in range(iters):
                data = next(train_reader())
                loss_v = exe.run(binary,
                                 feed=feeder.feed(data),
                                 fetch_list=[loss])
                if not for_ci:
                    print('{}: {}'.format('loss' + dev_name +
                                          activation_quant_type + '_' +
                                          weight_quant_type, loss_v))

        test_data = next(test_reader())
        with fluid.program_guard(quantized_test_program):
            w_var = fluid.framework._get_var('conv2d_1.w_0.quantized',
                                             quantized_test_program)
        # Testing
        with fluid.scope_guard(scope):
            test_loss1, w_quant = exe.run(program=quantized_test_program,
                                          feed=feeder.feed(test_data),
                                          fetch_list=[loss, w_var])

        # Freeze graph for inference, but the weight of fc/conv is still float type.
        freeze_pass = QuantizationFreezePass(
            scope=scope, place=place, bias_correction=bias_correction, \
            weight_quantize_type=weight_quant_type)
        freeze_pass.apply(test_graph)
        if not for_ci:
            marked_nodes = set()
            for op in test_graph.all_op_nodes():
                if op.name().find('quantize') > -1:
                    marked_nodes.add(op)
            test_graph.draw('.', 'test_freeze' + dev_name +
                            activation_quant_type + '_' + weight_quant_type,
                            marked_nodes)

        server_program = test_graph.to_program()
        with fluid.scope_guard(scope):
            test_loss2, = exe.run(program=server_program,
                                  feed=feeder.feed(test_data),
                                  fetch_list=[loss])
        self.assertAlmostEqual(test_loss1, test_loss2, delta=5e-3)
        if not for_ci:
            print(
                '{}: {}'.format('test_loss1' + dev_name + activation_quant_type
                                + '_' + weight_quant_type, test_loss1))
            print(
                '{}: {}'.format('test_loss2' + dev_name + activation_quant_type
                                + '_' + weight_quant_type, test_loss2))
        w_freeze = np.array(scope.find_var('conv2d_1.w_0').get_tensor())
        # Maybe failed, this is due to the calculation precision
        # self.assertAlmostEqual(np.sum(w_freeze), np.sum(w_quant))
        if not for_ci:
            print('{}: {}'.format('w_freeze' + dev_name + activation_quant_type
                                  + '_' + weight_quant_type, np.sum(w_freeze)))
            print('{}: {}'.format('w_quant' + dev_name + activation_quant_type +
                                  '_' + weight_quant_type, np.sum(w_quant)))

        # Convert parameter to 8-bit.
        convert_int8_pass = ConvertToInt8Pass(scope=scope, place=place)
        convert_int8_pass.apply(test_graph)
        if not for_ci:
            marked_nodes = set()
            for op in test_graph.all_op_nodes():
                if op.name().find('quantize') > -1:
                    marked_nodes.add(op)
            test_graph.draw('.', 'test_int8' + dev_name + activation_quant_type
                            + '_' + weight_quant_type, marked_nodes)
        server_program_int8 = test_graph.to_program()
        # Save the 8-bit parameter and model file.
        with fluid.scope_guard(scope):
            fluid.io.save_inference_model(
                'server_int8' + dev_name + activation_quant_type + '_' +
                weight_quant_type, ['image', 'label'], [loss], exe,
                server_program_int8)
            # Test whether the 8-bit parameter and model file can be loaded successfully.
            [infer, feed, fetch] = fluid.io.load_inference_model(
                'server_int8' + dev_name + activation_quant_type + '_' +
                weight_quant_type, exe)
        # Check the loaded 8-bit weight.
        w_8bit = np.array(scope.find_var('conv2d_1.w_0.int8').get_tensor())
        self.assertEqual(w_8bit.dtype, np.int8)
        self.assertEqual(np.sum(w_8bit), np.sum(w_freeze))
        if not for_ci:
            print('{}: {}'.format('w_8bit' + dev_name + activation_quant_type +
                                  '_' + weight_quant_type, np.sum(w_8bit)))
            print('{}: {}'.format('w_freeze' + dev_name + activation_quant_type
                                  + '_' + weight_quant_type, np.sum(w_freeze)))

        mobile_pass = TransformForMobilePass()
        mobile_pass.apply(test_graph)
        if not for_ci:
            marked_nodes = set()
            for op in test_graph.all_op_nodes():
                if op.name().find('quantize') > -1:
                    marked_nodes.add(op)
            test_graph.draw('.', 'test_mobile' + dev_name +
                            activation_quant_type + '_' + weight_quant_type,
                            marked_nodes)

        mobile_program = test_graph.to_program()
        with fluid.scope_guard(scope):
            fluid.io.save_inference_model(
                'mobile_int8' + dev_name + activation_quant_type + '_' +
                weight_quant_type, ['image', 'label'], [loss], exe,
                mobile_program)
Пример #6
0
    def quan(self, config_file):
        if not fluid.core.is_compiled_with_cuda():
            return
        class_dim = 10
        image_shape = [1, 28, 28]

        train_program = fluid.Program()
        startup_program = fluid.Program()

        with fluid.program_guard(train_program, startup_program):
            with fluid.unique_name.guard():
                image = fluid.layers.data(
                    name='image', shape=image_shape, dtype='float32')
                image.stop_gradient = False
                label = fluid.layers.data(
                    name='label', shape=[1], dtype='int64')
                out = MobileNet(name='quan').net(input=image,
                                                 class_dim=class_dim)
                print("out: {}".format(out.name))
                acc_top1 = fluid.layers.accuracy(input=out, label=label, k=1)
                acc_top5 = fluid.layers.accuracy(input=out, label=label, k=5)
                cost = fluid.layers.cross_entropy(input=out, label=label)
                avg_cost = fluid.layers.mean(x=cost)

        val_program = train_program.clone(for_test=False)

        optimizer = fluid.optimizer.Momentum(
            momentum=0.9,
            learning_rate=0.01,
            regularization=fluid.regularizer.L2Decay(4e-5))

        scope = fluid.Scope()
        place = fluid.CUDAPlace(0)
        exe = fluid.Executor(place)
        exe.run(startup_program, scope=scope)

        val_reader = paddle.batch(paddle.dataset.mnist.test(), batch_size=128)

        val_feed_list = [('img', image.name), ('label', label.name)]
        val_fetch_list = [('acc_top1', acc_top1.name), ('acc_top5',
                                                        acc_top5.name)]

        train_reader = paddle.batch(
            paddle.dataset.mnist.train(), batch_size=128)
        train_feed_list = [('img', image.name), ('label', label.name)]
        train_fetch_list = [('loss', avg_cost.name)]

        com_pass = Compressor(
            place,
            scope,
            train_program,
            train_reader=train_reader,
            train_feed_list=train_feed_list,
            train_fetch_list=train_fetch_list,
            eval_program=val_program,
            eval_reader=val_reader,
            eval_feed_list=val_feed_list,
            eval_fetch_list=val_fetch_list,
            train_optimizer=optimizer)
        com_pass.config(config_file)
        eval_graph = com_pass.run()
Пример #7
0
def infer_epoch(args, vocab_size, test_reader, use_cuda, i2w):
    """ inference function """
    epoch_model_path_list = []
    epoch_model_name_list = []
    for file in os.listdir(model_dir):
        file_path = os.path.join(model_dir, file)
        # hard code for epoch model folder
        if os.path.isdir(file_path) and is_number(file):
            epoch_model_path_list.append(file_path)
            epoch_model_name_list.append(file)
    if len(epoch_model_path_list) == 0:
        return
    print("Save model len {}".format(len(epoch_model_path_list)))

    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
    exe = fluid.Executor(place)
    emb_size = args.emb_size
    batch_size = args.batch_size
    result_dict = collections.OrderedDict()
    with fluid.scope_guard(fluid.Scope()):
        main_program = fluid.Program()
        with fluid.program_guard(main_program):
            values, pred = infer_network(vocab_size, emb_size)
            for epoch, model_path in enumerate(epoch_model_path_list):
                print("Begin infer model: {}".format(model_path))
                copy_program = main_program.clone()
                fluid.io.load_vars(
                    executor=exe, dirname=model_path, predicate=_load_emb)
                accum_num = 0
                accum_num_sum = 0.0
                t0 = time.time()
                step_id = 0
                for data in test_reader():
                    step_id += 1
                    b_size = len([dat[0] for dat in data])
                    wa = np.array([dat[0] for dat in data]).astype(
                        "int64").reshape(b_size)
                    wb = np.array([dat[1] for dat in data]).astype(
                        "int64").reshape(b_size)
                    wc = np.array([dat[2] for dat in data]).astype(
                        "int64").reshape(b_size)

                    label = [dat[3] for dat in data]
                    input_word = [dat[4] for dat in data]
                    para = exe.run(copy_program,
                                   feed={
                                       "analogy_a": wa,
                                       "analogy_b": wb,
                                       "analogy_c": wc,
                                       "all_label": np.arange(vocab_size)
                                       .reshape(vocab_size).astype("int64"),
                                   },
                                   fetch_list=[pred.name, values],
                                   return_numpy=False)
                    pre = np.array(para[0])
                    val = np.array(para[1])
                    for ii in range(len(label)):
                        top4 = pre[ii]
                        accum_num_sum += 1
                        for idx in top4:
                            if int(idx) in input_word[ii]:
                                continue
                            if int(idx) == int(label[ii][0]):
                                accum_num += 1
                            break
                    if step_id % 1 == 0:
                        print("step:%d %d " % (step_id, accum_num))
                print("model: {} \t acc: {} ".format(
                    model_path, 1.0 * accum_num / accum_num_sum))
                epoch_acc = 1.0 * accum_num / accum_num_sum
                result_dict[epoch] = epoch_acc
    def quantize_program(self,
                         use_cuda,
                         seed,
                         activation_quant_type='abs_max',
                         weight_quant_type='abs_max',
                         for_ci=False):
        def build_program(main, startup, is_test):
            main.random_seed = seed
            startup.random_seed = seed
            with fluid.unique_name.guard():
                with fluid.program_guard(main, startup):
                    img = fluid.layers.data(name='image',
                                            shape=[1, 28, 28],
                                            dtype='float32')
                    label = fluid.layers.data(name='label',
                                              shape=[1],
                                              dtype='int64')
                    loss = conv_net(img, label)
                    if not is_test:
                        opt = fluid.optimizer.Adam(learning_rate=0.0001)
                        opt.minimize(loss)
            return [img, label], loss

        random.seed(0)
        np.random.seed(0)

        # 1 Define program
        train_program = fluid.Program()
        startup_program = fluid.Program()
        test_program = fluid.Program()
        feeds, loss = build_program(train_program, startup_program, False)
        build_program(test_program, startup_program, True)
        test_program = test_program.clone(for_test=True)

        if not for_ci:
            train_graph = IrGraph(core.Graph(train_program.desc),
                                  for_test=False)
            train_graph.draw('.', 'train_program_1')
            test_graph = IrGraph(core.Graph(test_program.desc), for_test=True)
            test_graph.draw('.', 'test_program_1')

        # 2 Apply quantization
        qt = QuantizeTranspilerV2(
            activation_quantize_type=activation_quant_type,
            weight_quantize_type=weight_quant_type)
        qt.apply(train_program, startup_program, is_test=False)
        qt.apply(test_program, startup_program, is_test=True)

        # 3 Train
        place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
        exe = fluid.Executor(place)
        scope = fluid.Scope()
        with fluid.scope_guard(scope):
            exe.run(startup_program)
        if not for_ci:
            train_graph = IrGraph(core.Graph(train_program.desc),
                                  for_test=False)
            train_graph.draw('.', 'train_program_2')
            test_graph = IrGraph(core.Graph(test_program.desc), for_test=True)
            test_graph.draw('.', 'test_program_2')

        build_strategy = fluid.BuildStrategy()
        build_strategy.memory_optimize = False
        build_strategy.enable_inplace = False
        build_strategy.fuse_all_reduce_ops = False
        binary = fluid.CompiledProgram(train_program).with_data_parallel(
            loss_name=loss.name, build_strategy=build_strategy)
        iters = 5
        batch_size = 8

        train_reader = paddle.batch(paddle.dataset.mnist.train(),
                                    batch_size=batch_size)
        feeder = fluid.DataFeeder(feed_list=feeds, place=place)
        with fluid.scope_guard(scope):
            for idx in range(iters):
                data = next(train_reader())
                loss_v = exe.run(binary,
                                 feed=feeder.feed(data),
                                 fetch_list=[loss])
                if not for_ci and idx % 20 == 0:
                    print('{}: {}'.format('loss', np.mean(loss_v)))

        print('{}: {}'.format('loss', np.mean(loss_v)))

        # 4 Convert
        qt.convert(test_program, scope)
        if not for_ci:
            with fluid.scope_guard(scope):
                fluid.io.save_inference_model('./infer_model',
                                              ['image', 'label'], [loss],
                                              exe,
                                              test_program,
                                              clip_extra=True)
Пример #9
0
def f3_data_reader(box):
    pass


# Initialization

place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
exe = fluid.Executor(place)
startup = fluid.Program()

# Feed configure
# if you want to shuffle "reader=paddle.reader.shuffle(dataReader(), buf_size)"

# load infer model

f1_scope = fluid.Scope()
f2_scope = fluid.Scope()
se_scope = fluid.Scope()
with fluid.scope_guard(f1_scope):
    [infer_program, feed_target_names,
     fetch_targets] = fluid.io.load_inference_model(model_path, exe)
with fluid.scope_guard(f2_scope):
    [infer_program2, feed_target_names2,
     fetch_targets2] = fluid.io.load_inference_model(model_path2, exe)

f1_data_list = f1_data_reader(img_file_path)
# Start infer

exe.run(startup)

s = time.time()
Пример #10
0
 def test_batch_number_with_different_length_files(self):
     for p in self.get_all_places():
         with fluid.scope_guard(fluid.Scope()):
             self.check_batch_number(place=p, randomize_batch_num=True)
Пример #11
0
    def _test(self,
              place,
              use_tensor=True,
              use_fluid_api=True,
              use_global_beta_pow=False,
              flatten_param_grads=False):
        paddle.enable_static()
        main_prog = paddle.static.Program()
        startup_prog = paddle.static.Program()
        SEED = 2021
        paddle.seed(SEED)
        np.random.seed(SEED)

        a_np = np.random.random(size=(2, 2)).astype('float32')
        b_np = np.random.random(size=(2, 2)).astype('float32')
        label_np = np.random.randint(2, size=(2, 1)).astype('int64')
        weight_attr1 = paddle.ParamAttr(
            name="weight1",
            initializer=fluid.initializer.Constant(value=1.0),
            trainable=True)
        weight_attr2 = paddle.ParamAttr(
            name="weight2",
            initializer=fluid.initializer.Constant(value=2.0),
            trainable=True)
        clip = paddle.nn.ClipGradByGlobalNorm(clip_norm=1.0)

        with paddle.static.program_guard(main_prog, startup_prog):
            with paddle.utils.unique_name.guard():
                a = paddle.static.data(name="a", shape=[2, 2], dtype='float32')
                b = paddle.static.data(name="b", shape=[2, 2], dtype='float32')
                label = paddle.static.data(name="label",
                                           shape=[2, 1],
                                           dtype='int64')

                sum = paddle.add(a, b)
                z = paddle.pow(sum, 2.0)

                fc_1 = fluid.layers.fc(input=z,
                                       size=2,
                                       param_attr=weight_attr1)
                prediction = fluid.layers.fc(input=fc_1,
                                             size=2,
                                             param_attr=weight_attr2,
                                             act='softmax')

                cost = fluid.layers.cross_entropy(input=prediction,
                                                  label=label)
                loss = fluid.layers.reduce_mean(cost)
                beta1_init = 0.9
                beta2_init = 0.999
                epsilon_init = 1e-8
                if use_tensor:
                    beta1 = fluid.layers.create_global_var(
                        shape=[1],
                        value=float(beta1_init),
                        dtype='float32',
                        persistable=True,
                        name="beta1")
                    beta2 = fluid.layers.create_global_var(
                        shape=[1],
                        value=float(beta2_init),
                        dtype='float32',
                        persistable=True,
                        name="beta2")
                    epsilon = fluid.layers.create_global_var(
                        shape=[1],
                        value=float(epsilon_init),
                        dtype='float32',
                        persistable=True,
                        name="epsilon")
                    if use_fluid_api:
                        adam = fluid.optimizer.Adam(
                            learning_rate=0.01,
                            beta1=beta1,
                            beta2=beta2,
                            epsilon=epsilon,
                            use_global_beta_pow=use_global_beta_pow,
                            flatten_param_grads=flatten_param_grads,
                            align_size=256,
                            grad_clip=clip)
                    else:
                        adam = paddle.optimizer.Adam(learning_rate=0.01,
                                                     beta1=beta1,
                                                     beta2=beta2,
                                                     epsilon=epsilon,
                                                     grad_clip=clip)
                else:
                    if use_fluid_api:
                        adam = fluid.optimizer.Adam(
                            learning_rate=0.01,
                            beta1=beta1_init,
                            beta2=beta2_init,
                            epsilon=epsilon_init,
                            use_global_beta_pow=use_global_beta_pow,
                            flatten_param_grads=flatten_param_grads,
                            align_size=256,
                            grad_clip=clip)
                    else:
                        adam = fluid.optimizer.Adam(learning_rate=0.01,
                                                    beta1=beta1_init,
                                                    beta2=beta2_init,
                                                    epsilon=epsilon_init,
                                                    grad_clip=clip)

                adam.minimize(loss)

        scope = fluid.Scope()
        with fluid.scope_guard(scope):
            exe = paddle.static.Executor(place)
            exe.run(startup_prog)

            print("Start run on {}".format(place))
            for epoch in range(10):
                pred_res, loss_res = exe.run(main_prog,
                                             feed={
                                                 "a": a_np,
                                                 "b": b_np,
                                                 "label": label_np
                                             },
                                             fetch_list=[prediction, loss])
                print("Epoch {} | Prediction[0]: {}, Loss: {}".format(
                    epoch, pred_res[0], loss_res))
            paddle.disable_static()
            return pred_res, loss_res
    def quantization_scale(self,
                           use_cuda,
                           seed,
                           activation_quant_type,
                           weight_quant_type='abs_max',
                           for_ci=False):
        def build_program(main, startup, is_test):
            main.random_seed = seed
            startup.random_seed = seed
            with fluid.unique_name.guard():
                with fluid.program_guard(main, startup):
                    img = fluid.layers.data(name='image',
                                            shape=[1, 28, 28],
                                            dtype='float32')
                    label = fluid.layers.data(name='label',
                                              shape=[1],
                                              dtype='int64')
                    loss = conv_net(img, label)
                    if not is_test:
                        opt = fluid.optimizer.Adam(learning_rate=0.0001)
                        opt.minimize(loss)
            return [img, label], loss

        random.seed(0)
        np.random.seed(0)

        main = fluid.Program()
        startup = fluid.Program()
        test_program = fluid.Program()
        feeds, loss = build_program(main, startup, False)
        build_program(test_program, startup, True)
        test_program = test_program.clone(for_test=True)
        main_graph = IrGraph(core.Graph(main.desc), for_test=False)
        test_graph = IrGraph(core.Graph(test_program.desc), for_test=True)

        place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
        exe = fluid.Executor(place)
        scope = fluid.Scope()
        with fluid.scope_guard(scope):
            exe.run(startup)

        transform_pass = QuantizationTransformPass(
            scope=scope,
            place=place,
            activation_quantize_type=activation_quant_type,
            weight_quantize_type=weight_quant_type)
        transform_pass.apply(main_graph)
        transform_pass.apply(test_graph)

        add_quant_dequant_pass = AddQuantDequantPass(scope=scope, place=place)
        add_quant_dequant_pass.apply(main_graph)
        add_quant_dequant_pass.apply(test_graph)

        scale_training_pass = OutScaleForTrainingPass(scope=scope, place=place)
        scale_training_pass.apply(main_graph)

        dev_name = '_gpu' if use_cuda else '_cpu'
        if not for_ci:
            marked_nodes = set()
            for op in main_graph.all_op_nodes():
                if op.name().find('quantize') > -1:
                    marked_nodes.add(op)
            main_graph.draw('.', 'main_scale' + dev_name, marked_nodes)
            marked_nodes = set()
            for op in test_graph.all_op_nodes():
                if op.name().find('quantize') > -1:
                    marked_nodes.add(op)
            test_graph.draw('.', 'test_scale' + dev_name, marked_nodes)

        build_strategy = fluid.BuildStrategy()
        build_strategy.memory_optimize = False
        build_strategy.enable_inplace = False
        build_strategy.fuse_all_reduce_ops = False
        binary = fluid.CompiledProgram(main_graph.graph).with_data_parallel(
            loss_name=loss.name, build_strategy=build_strategy)
        iters = 5
        batch_size = 8

        train_reader = paddle.batch(paddle.reader.shuffle(
            paddle.dataset.mnist.train(), buf_size=500),
                                    batch_size=batch_size)
        feeder = fluid.DataFeeder(feed_list=feeds, place=place)
        with fluid.scope_guard(scope):
            for _ in range(iters):
                data = next(train_reader())
                loss_v = exe.run(binary,
                                 feed=feeder.feed(data),
                                 fetch_list=[loss])
                if not for_ci:
                    print('{}: {}'.format('loss' + dev_name, loss_v))

        scale_inference_pass = OutScaleForInferencePass(scope=scope)
        scale_inference_pass.apply(test_graph)

        # Freeze graph for inference, but the weight of fc/conv is still float type.
        freeze_pass = QuantizationFreezePass(
            scope=scope, place=place, weight_quantize_type=weight_quant_type)
        freeze_pass.apply(test_graph)
        server_program = test_graph.to_program()

        if not for_ci:
            marked_nodes = set()
            for op in test_graph.all_op_nodes():
                if op.name().find('quantize') > -1:
                    marked_nodes.add(op)
            test_graph.draw('.', 'quant_scale' + dev_name, marked_nodes)

        with open('quant_scale_model' + dev_name + '.txt', 'w') as f:
            f.write(str(server_program))

        with fluid.scope_guard(scope):
            fluid.io.save_inference_model('quant_scale_model' + dev_name,
                                          ['image', 'label'], [loss], exe,
                                          server_program)
Пример #13
0
    def test_pslib_1(self):
        """Test cases for pslib."""
        import paddle.fluid as fluid
        from paddle.fluid.incubate.fleet.parameter_server.pslib import fleet
        from paddle.fluid.incubate.fleet.parameter_server.pslib import PSLib
        from paddle.fluid.incubate.fleet.base.role_maker import GeneralRoleMaker

        os.environ["POD_IP"] = "127.0.0.1"
        os.environ["PADDLE_PORT"] = "36001"
        os.environ["TRAINING_ROLE"] = "TRAINER"
        os.environ["PADDLE_TRAINER_ENDPOINTS"] = "127.0.0.1:36001"
        os.environ["PADDLE_PSERVERS_IP_PORT_LIST"] = "127.0.0.1:36002"
        os.environ["PADDLE_TRAINER_ID"] = "0"
        role_maker = GeneralRoleMaker()
        #print("init rolemaker")
        #role_maker.generate_role()
        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        #fleet.init(role_maker)
        train_program = fluid.Program()
        startup_program = fluid.Program()
        scope = fluid.Scope()
        with fluid.program_guard(train_program, startup_program):
            show = fluid.layers.data(name="show", shape=[-1, 1], \
                dtype="float32", lod_level=1, append_batch_size=False)
            fc = fluid.layers.fc(input=show, size=1, act=None)
            label = fluid.layers.data(name="click", shape=[-1, 1], \
                dtype="int64", lod_level=1, append_batch_size=False)
            label_cast = fluid.layers.cast(label, dtype='float32')
            cost = fluid.layers.log_loss(fc, label_cast)
        try:
            adam = fluid.optimizer.Adam(learning_rate=0.000005)
            adam = fleet.distributed_optimizer(adam)
            adam.minimize([cost], [scope])
            fleet.run_server()
        except:
            print("do not support pslib test, skip")
            return
        fleet.clear_one_table(0)
        from paddle.fluid.incubate.fleet.base.role_maker import \
            MPISymetricRoleMaker
        try:
            role = MPISymetricRoleMaker()
            role._all_reduce([1], [2])
        except:
            print("catch expected error of not inited")
        try:
            role = MPISymetricRoleMaker()
            role._all_reduce([1], [2], "min")
        except:
            print("catch expected error of not inited")
        try:
            role = MPISymetricRoleMaker()
            role._all_reduce([1], [2], "max")
        except:
            print("catch expected error of not inited")
        try:
            role = MPISymetricRoleMaker()
            role._all_reduce([1], [2], "unknown")
        except:
            print("catch expected error of unknown type")
Пример #14
0
 def test_main(self):
     with fluid.program_guard(fluid.Program(), fluid.Program()):
         with fluid.scope_guard(fluid.Scope()):
             self.run_network()
Пример #15
0
 def set_program(self, avg_cost, strategy):
     with fluid.scope_guard(fluid.Scope()):
         optimizer = fluid.optimizer.SGD(0.1)
         optimizer = fleet.distributed_optimizer(optimizer, strategy)
         optimizer.minimize(avg_cost)
Пример #16
0
    def test_prune(self):
        main_program = fluid.Program()
        startup_program = fluid.Program()
        #   X       X              O       X              O
        # conv1-->conv2-->sum1-->conv3-->conv4-->sum2-->conv5-->conv6
        #     |            ^ |                    ^
        #     |____________| |____________________|
        #
        # X: prune output channels
        # O: prune input channels
        with fluid.program_guard(main_program, startup_program):
            input = fluid.data(name="image", shape=[None, 3, 16, 16])
            conv1 = conv_bn_layer(input, 8, 3, "conv1")
            conv2 = conv_bn_layer(conv1, 8, 3, "conv2")
            sum1 = conv1 + conv2
            conv3 = conv_bn_layer(sum1, 8, 3, "conv3")
            conv4 = conv_bn_layer(conv3, 8, 3, "conv4")
            sum2 = conv4 + sum1
            conv5 = conv_bn_layer(sum2, 8, 3, "conv5")
            conv6 = conv_bn_layer(conv5, 8, 3, "conv6")

            conv7 = fluid.layers.conv2d_transpose(input=conv6,
                                                  num_filters=16,
                                                  filter_size=2,
                                                  stride=2)

        shapes = {}
        for param in main_program.global_block().all_parameters():
            shapes[param.name] = param.shape

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        scope = fluid.Scope()
        exe.run(startup_program, scope=scope)
        pruner = Pruner()
        main_program, _, _ = pruner.prune(
            main_program,
            scope,
            params=["conv4_weights", "conv2d_transpose_0.w_0"],
            ratios=[0.5, 0.6],
            place=place,
            lazy=False,
            only_graph=False,
            param_backup=None,
            param_shape_backup=None)

        shapes = {
            "conv1_weights": (4, 3, 3, 3),
            "conv2_weights": (4, 4, 3, 3),
            "conv3_weights": (8, 4, 3, 3),
            "conv4_weights": (4, 8, 3, 3),
            "conv5_weights": (8, 4, 3, 3),
            "conv6_weights": (8, 8, 3, 3),
            "conv2d_transpose_0.w_0": (8, 16, 2, 2),
        }

        for param in main_program.global_block().all_parameters():
            if param.name in shapes:
                print("param: {}; param shape: {}".format(
                    param.name, param.shape))
                self.assertTrue(param.shape == shapes[param.name])
Пример #17
0
def evaluate():
    place = fluid.CUDAPlace(0) if cfg.use_cuda else fluid.CPUPlace()
    inference_scope = fluid.Scope()
    test_files = [
        os.path.join(cfg.evaluate_file_path, x)
        for x in os.listdir(cfg.evaluate_file_path)
    ]
    dataset = CriteoDataset()
    test_reader = paddle.batch(dataset.test(test_files),
                               batch_size=cfg.batch_size)

    startup_program = fluid.framework.Program()
    test_program = fluid.framework.Program()
    model = DNN()
    model_path = os.path.join(cfg.save_path,
                              model.name + "_epoch_" + str(cfg.test_epoch),
                              "checkpoint")

    with fluid.framework.program_guard(test_program, startup_program):
        with fluid.unique_name.guard():
            inputs = model.input_data()
            loss, auc_var = model.net(inputs)

            exe = fluid.Executor(place)
            feeder = fluid.DataFeeder(feed_list=inputs, place=place)

            fluid.load(fluid.default_main_program(), model_path, exe)

            auc_states_names = [
                '_generated_var_0', '_generated_var_1', '_generated_var_2',
                '_generated_var_3'
            ]
            for var in auc_states_names:
                set_zero(var, scope=inference_scope, place=place)

            run_index = 0
            infer_auc = 0
            L = []
            for batch_id, data_test in enumerate(test_reader()):
                loss_val, auc_val = exe.run(test_program,
                                            feed=feeder.feed(data_test),
                                            fetch_list=[loss, auc_var])
                run_index += 1
                infer_auc = auc_val
                L.append(loss_val / cfg.batch_size)
                if batch_id % cfg.log_interval == 0:
                    logger.info("TEST --> batch: {} loss: {} auc: {}".format(
                        batch_id, loss_val / cfg.batch_size, auc_val))

            infer_loss = np.mean(L)
            infer_result = {}
            infer_result['loss'] = infer_loss
            infer_result['auc'] = infer_auc
            if not os.path.isdir(cfg.log_dir):
                os.makedirs(cfg.log_dir)
            log_path = os.path.join(cfg.log_dir,
                                    model.name + '_infer_result.log')

            logger.info(str(infer_result))
            with open(log_path, 'w+') as f:
                f.write(str(infer_result))
            logger.info("Done.")
    return infer_result
Пример #18
0
    def test_concat(self):
        main_program = fluid.Program()
        startup_program = fluid.Program()
        #                                  X
        # conv1   conv2-->concat         conv3-->sum-->out
        #     |            ^ |                    ^
        #     |____________| |____________________|
        #
        with fluid.program_guard(main_program, startup_program):
            input = fluid.data(name="image", shape=[None, 3, 16, 16])
            conv1 = conv_bn_layer(input, 8, 3, "conv1")
            conv2 = conv_bn_layer(input, 8, 3, "conv2", sync_bn=True)
            tmp = fluid.layers.concat([conv1, conv2], axis=1)
            conv3 = conv_bn_layer(input, 16, 3, "conv3", bias=None)
            out = conv3 + tmp

        shapes = {}
        for param in main_program.global_block().all_parameters():
            shapes[param.name] = param.shape

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        scope = fluid.Scope()
        exe.run(startup_program, scope=scope)
        pruner = Pruner()
        # test backward search of concat
        pruned_program, _, _ = pruner.prune(main_program,
                                            scope,
                                            params=["conv3_weights"],
                                            ratios=[0.5],
                                            place=place,
                                            lazy=False,
                                            only_graph=True,
                                            param_backup=None,
                                            param_shape_backup=None)
        shapes = {
            "conv3_weights": (8, 3, 3, 3),
            "conv2_weights": (4, 3, 3, 3),
            "conv1_weights": (4, 3, 3, 3)
        }
        for param in pruned_program.global_block().all_parameters():
            if "weights" in param.name and "conv2d" in param.name:
                self.assertTrue(shapes[param.name] == param.shape)

        # test forward search of concat
        pruned_program, _, _ = pruner.prune(
            main_program,
            scope,
            params=["conv1_weights", "conv2_weights"],
            ratios=[0.5, 0.5],
            place=place,
            lazy=False,
            only_graph=False,
            param_backup=None,
            param_shape_backup=None)

        shapes = {
            "conv1_weights": (4, 3, 3, 3),
            "conv1_bn_scale": (4, ),
            "conv1_bn_variance": (4, ),
            "conv1_bn_mean": (4, ),
            "conv1_bn_offset": (4, ),
            "conv2_weights": (4, 3, 3, 3),
            "sync_batch_norm_0.w_0": (4, ),
            "sync_batch_norm_0.w_1": (4, ),
            "conv2_bn_scale": (4, ),
            "conv2_bn_offset": (4, ),
            "conv3_weights": (8, 3, 3, 3),
            "conv3_bn_mean": (8, ),
            "conv3_bn_offset": (8, ),
            "conv3_bn_scale": (8, ),
            "conv3_bn_variance": (8, ),
            "conv3_out.b_0": (8, ),
        }

        for param in pruned_program.global_block().all_parameters():
            if "weights" in param.name and "conv2d" in param.name:
                self.assertTrue(shapes[param.name] == param.shape)
Пример #19
0
    def loss_scaling_check(self, use_cuda=True, scope=fluid.Scope()):
        a = fluid.data(name="a", shape=[1024, 1024], dtype='float32')
        b = fluid.data(name="b", shape=[512, 128], dtype='float32')
        x = [a, b]
        found_inf = fluid.data(name="found_inf", shape=[1], dtype='bool')
        prev_loss_scaling = fluid.data(name="prev_loss_scaling",
                                       shape=[1],
                                       dtype='float32')
        num_good_steps = fluid.data(name="num_good_steps",
                                    shape=[1],
                                    dtype='int32')
        num_bad_steps = fluid.data(name="num_bad_steps",
                                   shape=[1],
                                   dtype='int32')

        a_v = np.random.random([1024, 1024]).astype('float32')
        b_v = np.random.random([512, 128]).astype('float32')
        found_inf_v = np.array([False]).astype('bool')
        prev_loss_scaling_v = np.array([2048]).astype('float32')
        num_good_steps_v = np.array([999], dtype=np.int32)
        num_bad_steps_v = np.array([1], dtype=np.int32)

        incr_every_n_steps = 1000
        decr_every_n_nan_or_inf = 2
        incr_ratio = 2
        decr_ratio = 0.8

        result = amp_nn.update_loss_scaling(x,
                                            found_inf,
                                            prev_loss_scaling,
                                            num_good_steps,
                                            num_bad_steps,
                                            incr_every_n_steps,
                                            decr_every_n_nan_or_inf,
                                            incr_ratio,
                                            decr_ratio,
                                            name="update_loss_scaling")

        place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
        exe = fluid.Executor(place)
        with fluid.scope_guard(scope):
            exe.run(fluid.default_startup_program())
            result_v = exe.run(feed={
                'a': a_v,
                'b': b_v,
                'found_inf': found_inf_v,
                'prev_loss_scaling': prev_loss_scaling_v,
                'num_good_steps': num_good_steps_v,
                'num_bad_steps': num_bad_steps_v
            },
                               fetch_list=[
                                   result, x, found_inf, prev_loss_scaling,
                                   num_good_steps, num_bad_steps
                               ])
        assert np.array_equal(result_v[0], a_v)
        assert np.array_equal(result_v[1], b_v)
        assert np.array_equal(result_v[0], result_v[2])
        assert np.array_equal(result_v[1], result_v[3])
        assert np.array_equal(result_v[4], found_inf_v)
        assert np.array_equal(result_v[5], prev_loss_scaling_v * incr_ratio)
        assert np.array_equal(result_v[6], np.zeros_like(num_good_steps_v))
        assert np.array_equal(result_v[7], np.zeros_like(num_bad_steps_v))
    def mkldnn_based_freeze_graph(self,
                                  use_cuda,
                                  seed,
                                  activation_quant_type,
                                  weight_quant_type='abs_max',
                                  quant_perf=False,
                                  for_ci=False):
        random.seed(0)
        np.random.seed(0)

        main = fluid.Program()
        startup = fluid.Program()
        test_program = fluid.Program()
        feeds, loss = self.build_program(main, startup, False, seed)
        self.build_program(test_program, startup, True, seed)
        test_program = test_program.clone(for_test=True)
        main_graph = IrGraph(core.Graph(main.desc), for_test=False)
        test_graph = IrGraph(core.Graph(test_program.desc), for_test=True)

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        scope = fluid.Scope()
        with fluid.scope_guard(scope):
            exe.run(startup)
        # Apply the QuantizationTransformPass
        transform_pass = QuantizationTransformPass(
            scope=scope,
            place=place,
            activation_quantize_type=activation_quant_type,
            weight_quantize_type=weight_quant_type)
        transform_pass.apply(main_graph)
        transform_pass.apply(test_graph)

        build_strategy = fluid.BuildStrategy()
        build_strategy.memory_optimize = False
        build_strategy.enable_inplace = False
        binary = fluid.CompiledProgram(main_graph.graph).with_data_parallel(
            loss_name=loss.name, build_strategy=build_strategy)
        quantized_test_program = test_graph.to_program()
        iters = 5
        batch_size = 8

        train_reader = paddle.batch(paddle.reader.shuffle(
            paddle.dataset.mnist.train(), buf_size=500),
                                    batch_size=batch_size)
        test_reader = paddle.batch(paddle.dataset.mnist.test(),
                                   batch_size=batch_size)
        feeder = fluid.DataFeeder(feed_list=feeds, place=place)

        # Training the model to get the weights value
        with fluid.scope_guard(scope):
            for _ in range(iters):
                data = next(train_reader())
                loss_v = exe.run(binary,
                                 feed=feeder.feed(data),
                                 fetch_list=[loss])

        # Freeze graph for inference, but the weight of fc/conv is still float type.
        freeze_pass = QuantizationFreezePass(
            scope=scope, place=place, weight_quantize_type=weight_quant_type)
        freeze_pass.apply(test_graph)

        # Transform quantized graph for MKL-DNN INT8 inference
        mkldnn_int8_pass = QuantInt8MkldnnPass(_scope=scope, _place=place)
        mkldnn_int8_pass.apply(test_graph)
        dev_name = '_cpu_'
        if not for_ci:
            marked_nodes = set()
            for op in test_graph.all_op_nodes():
                if op.name().find('quantize') > -1:
                    marked_nodes.add(op)
            test_graph.draw(
                '.', 'test_mkldnn' + dev_name + activation_quant_type + '_' +
                weight_quant_type, marked_nodes)
        mkldnn_program = test_graph.to_program()

        # Check the transformation weights of conv2d and mul
        conv_w_mkldnn = np.array(scope.find_var('conv2d_1.w_0').get_tensor())
        mul_w_mkldnn = np.array(scope.find_var('fc_0.w_0').get_tensor())
        # Check if weights are still integer
        self.assertFalse(self.isinteger(np.sum(conv_w_mkldnn)))
        self.assertFalse(self.isinteger(np.sum(mul_w_mkldnn)))

        # Check if the conv2d output and mul output are correctly linked to fake_dequantize's
        # output
        self.check_program(mkldnn_program)
        if not for_ci:
            print('{}: {}'.format(
                'w_mkldnn' + dev_name + activation_quant_type + '_' +
                weight_quant_type, np.sum(w_mkldnn)))
Пример #21
0
    def build_network(self, context):
        context["model"] = {}
        for model_dict in context["phases"]:
            context["model"][model_dict["name"]] = {}
            train_program = fluid.Program()
            startup_program = fluid.Program()
            scope = fluid.Scope()
            dataset_name = model_dict["dataset_name"]

            with fluid.program_guard(train_program, startup_program):
                with fluid.unique_name.guard():
                    with fluid.scope_guard(scope):
                        model_path = envs.os_path_adapter(
                            envs.workspace_adapter(model_dict["model"]))
                        model = envs.lazy_instance_by_fliename(
                            model_path, "Model")(context["env"])

                        model._data_var = model.input_data(
                            dataset_name=model_dict["dataset_name"])

                        if envs.get_global_env("dataset." + dataset_name +
                                               ".type") == "DataLoader":
                            model._init_dataloader(
                                is_infer=context["is_infer"])
                            data_loader = DataLoader(context)
                            data_loader.get_dataloader(context, dataset_name,
                                                       model._data_loader)

                        model.net(model._data_var, context["is_infer"])

                        finetuning_varnames = envs.get_global_env(
                            "runner." + context["runner_name"] +
                            ".finetuning_aspect_varnames",
                            default_value=[])

                        if len(finetuning_varnames) == 0:
                            raise ValueError(
                                "nothing need to be fine tuning, you may use other traning mode"
                            )

                        if len(finetuning_varnames) != 1:
                            raise ValueError(
                                "fine tuning mode can only accept one varname now"
                            )

                        varname = finetuning_varnames[0]
                        finetuning_vars = train_program.global_block(
                        ).vars[varname]
                        finetuning_vars.stop_gradient = True
                        optimizer = model.optimizer()
                        optimizer.minimize(model._cost)

            context["model"][
                model_dict["name"]]["main_program"] = train_program
            context["model"][
                model_dict["name"]]["startup_program"] = startup_program
            context["model"][model_dict["name"]]["scope"] = scope
            context["model"][model_dict["name"]]["model"] = model
            context["model"][model_dict["name"]][
                "default_main_program"] = train_program.clone()
            context["model"][model_dict["name"]]["compiled_program"] = None

        context["dataset"] = {}
        for dataset in context["env"]["dataset"]:
            type = envs.get_global_env("dataset." + dataset["name"] + ".type")

            if type == "QueueDataset":
                dataset_class = QueueDataset(context)
                context["dataset"][
                    dataset["name"]] = dataset_class.create_dataset(
                        dataset["name"], context)

        context["status"] = "startup_pass"
    def run_main(self, use_legacy_py_reader, with_data_parallel, places,
                 use_double_buffer):
        scope = fluid.Scope()
        with fluid.scope_guard(scope):
            startup_prog, main_prog, py_reader, loss = simple_fc_net(
                places, use_legacy_py_reader, use_double_buffer)

            reader = paddle.batch(random_reader, batch_size=BATCH_SIZE)

            ps = places if use_double_buffer else fluid.cpu_places(len(places))

            py_reader.set_sample_list_generator(
                reader, places=ps if py_reader.iterable else None)

            exe = fluid.Executor(place=places[0])
            exe.run(startup_prog)

            prog = fluid.CompiledProgram(main_prog)
            if with_data_parallel:
                prog = prog.with_data_parallel(loss_name=loss.name,
                                               places=places)

            step = 0
            step_list = []
            loss_list = []
            start_t = time.time()
            if not py_reader.iterable:
                for _ in six.moves.range(EPOCH_NUM):
                    step = 0
                    py_reader.start()
                    while True:
                        try:
                            L, = exe.run(program=prog,
                                         fetch_list=[loss],
                                         use_program_cache=True)
                            loss_list.append(np.mean(L))
                            step += 1
                        except fluid.core.EOFException:
                            py_reader.reset()
                            break
                    step_list.append(step)
            else:
                for _ in six.moves.range(EPOCH_NUM):
                    step = 0
                    for d in py_reader():
                        assert len(d) == len(places), "{} != {}".format(
                            len(d), len(places))
                        for i, item in enumerate(d):
                            image = item['image']
                            label = item['label']
                            assert image.shape() == [BATCH_SIZE, 784]
                            assert label.shape() == [BATCH_SIZE, 1]
                            assert image._place()._equals(ps[i])
                            assert label._place()._equals(ps[i])
                        L, = exe.run(program=prog,
                                     feed=d,
                                     fetch_list=[loss],
                                     use_program_cache=True)
                        loss_list.append(np.mean(L))
                        step += 1
                    step_list.append(step)
            end_t = time.time()
            ret = {
                "time": end_t - start_t,
                "step": step_list,
                "loss": np.array(loss_list)
            }
            return ret
Пример #23
0
    def build_network(self, context):
        context["model"] = {}
        for model_dict in context["phases"]:
            context["model"][model_dict["name"]] = {}
            train_program = fluid.Program()
            startup_program = fluid.Program()
            scope = fluid.Scope()
            dataset_name = model_dict["dataset_name"]

            with fluid.program_guard(train_program, startup_program):
                with fluid.unique_name.guard():
                    with fluid.scope_guard(scope):
                        model_path = envs.os_path_adapter(
                            envs.workspace_adapter(model_dict["model"]))
                        model = envs.lazy_instance_by_fliename(
                            model_path, "Model")(context["env"])

                        if context["is_infer"]:
                            model._infer_data_var = model.input_data(
                                is_infer=context["is_infer"],
                                dataset_name=model_dict["dataset_name"])
                        else:
                            model._data_var = model.input_data(
                                dataset_name=model_dict["dataset_name"])

                        if envs.get_global_env("dataset." + dataset_name +
                                               ".type") == "DataLoader":
                            model._init_dataloader(
                                is_infer=context["is_infer"])
                            data_loader = DataLoader(context)
                            data_loader.get_dataloader(context, dataset_name,
                                                       model._data_loader)

                        if context["is_infer"]:
                            model.net(model._infer_data_var,
                                      context["is_infer"])
                        else:
                            model.net(model._data_var, context["is_infer"])
                            optimizer = model.optimizer()
                            optimizer.minimize(model._cost)
            context["model"][
                model_dict["name"]]["main_program"] = train_program
            context["model"][
                model_dict["name"]]["startup_program"] = startup_program
            context["model"][model_dict["name"]]["scope"] = scope
            context["model"][model_dict["name"]]["model"] = model
            context["model"][model_dict["name"]][
                "default_main_program"] = train_program.clone()
            context["model"][model_dict["name"]]["compiled_program"] = None

        context["dataset"] = {}
        for dataset in context["env"]["dataset"]:
            type = envs.get_global_env("dataset." + dataset["name"] + ".type")

            if type == "QueueDataset":
                dataset_class = QueueDataset(context)
                context["dataset"][
                    dataset["name"]] = dataset_class.create_dataset(
                        dataset["name"], context)

        context["status"] = "startup_pass"
Пример #24
0
    def test_pslib_1(self):
        """Test cases for pslib."""
        import paddle.fluid as fluid
        from paddle.fluid.incubate.fleet.parameter_server.pslib import fleet
        from paddle.fluid.incubate.fleet.parameter_server.pslib import \
            fleet_embedding, _prepare_params, _fleet_embedding, \
            _fleet_embedding_v2, FLEET_GLOBAL_DICT
        from paddle.fluid.incubate.fleet.base.role_maker import GeneralRoleMaker
        try:
            import netifaces
        except:
            print("warning: no netifaces, skip test_pslib_1")
            return
        os.environ["POD_IP"] = "127.0.0.1"
        os.environ["PADDLE_PORT"] = "36001"
        os.environ["TRAINING_ROLE"] = "TRAINER"
        os.environ["PADDLE_TRAINER_ENDPOINTS"] = "127.0.0.1:36001"
        os.environ["PADDLE_PSERVERS_IP_PORT_LIST"] = "127.0.0.1:36002"
        os.environ["PADDLE_TRAINER_ID"] = "0"
        role_maker = GeneralRoleMaker()
        role_maker.generate_role()
        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        fleet.init(role_maker)
        train_program = fluid.Program()
        startup_program = fluid.Program()
        scope = fluid.Scope()
        global FLEET_GLOBAL_DICT
        with fluid.program_guard(train_program, startup_program):
            show = fluid.layers.data(name="show", shape=[-1, 1], \
                dtype="int64", lod_level=1, append_batch_size=False)
            click = fluid.layers.data(name="click", shape=[-1, 1], \
                dtype="int64", lod_level=1, append_batch_size=False)
            with fleet_embedding(click_name=click.name):
                emb = fluid.layers.embedding(input=show, size=[1, 1], \
                    is_sparse=True, is_distributed=True, \
                    param_attr=fluid.ParamAttr(name="embedding"))
            emb = fluid.layers.data_norm(input=emb,
                                         name="a",
                                         epsilon=1e-4,
                                         param_attr={
                                             "batch_size": 1e4,
                                             "batch_sum_default": 0.0,
                                             "batch_square": 1e4
                                         })
            fc = fluid.layers.fc(input=emb, size=1, act=None)
            label = fluid.layers.data(name="click", shape=[-1, 1], \
                dtype="int64", lod_level=1, append_batch_size=False)
            label_cast = fluid.layers.cast(label, dtype='float32')
            cost = fluid.layers.log_loss(fc, label_cast)
        try:
            adam = fluid.optimizer.Adam(learning_rate=0.000005)
            adam = fleet.distributed_optimizer(
                adam,
                strategy={
                    "embedding": {
                        "sparse_accessor_class": "DownpourSparseValueAccessor"
                    }
                })
            adam.minimize([cost], [scope])
        except:
            print("do not support pslib test, skip")
            return
        FLEET_GLOBAL_DICT["cur_accessor"] = "DownpourCtrAccessor"
        try:
            _prepare_params(input=show, size=[1, 1])
        except:
            print("catch expected exception of param_attr=None")
        try:
            _prepare_params(input=show,
                            size=[1, 1],
                            param_attr=fluid.ParamAttr())
        except:
            print("catch expected exception of name=None")
        try:
            tmp = fluid.ParamAttr(name="embedding")
            _prepare_params(input=show, size=1, param_attr=tmp)
        except:
            print("catch expected exception of size not list")
        try:
            tmp = fluid.ParamAttr(name="embedding")
            _prepare_params(input=show, size=[-1, 12], param_attr=tmp)
        except:
            print("catch expected exception of size not equal")
        try:
            tmp = fluid.ParamAttr(name="embedding")
            _prepare_params(input=show,
                            size=[-1, 1],
                            param_attr=tmp,
                            is_sparse=False)
        except:
            print("catch expected exception of is_sparse=False")
        try:
            tmp = fluid.ParamAttr(name="embedding")
            _prepare_params(input=show, size=[-1, 1], param_attr=tmp, \
                            is_sparse=True, is_distributed=False)
        except:
            print("catch expected exception of is_distributed=False")
        try:
            _prepare_params(input=show, size=[-1, 1], \
                            param_attr=fluid.ParamAttr(name="embedding"), \
                            is_sparse=True, is_distributed=True, dtype="abc")
        except:
            print("catch expected exception of unknown dtype")
        try:
            FLEET_GLOBAL_DICT["emb_to_accessor"]["embedding"] = "unknown"
            tmp = fluid.ParamAttr(name="embedding")
            _prepare_params(input=show, size=[-1, 1], param_attr=tmp)
        except:
            print("catch expected exception of unknown accessor")
        FLEET_GLOBAL_DICT["cur_accessor"] = "DownpourCtrAccessor"
        try:
            _fleet_embedding(input=show, size=[-1, 1], is_sparse=True, \
                             is_distributed=True, dtype="float32", \
                             param_attr=fluid.ParamAttr(name="embedding"))
        except:
            print("catch expected exception of unknown accessor")
        try:
            _fleet_embedding_v2(input=show, size=[-1, 1], is_sparse=True, \
                                is_distributed=True, dtype="float32", \
                                param_attr=fluid.ParamAttr(name="embedding"))
        except:
            print("catch expected exception of unknown accessor")

        adam1 = fluid.optimizer.Adam(learning_rate=0.000005)
        adam1 = fleet.distributed_optimizer(
            adam1,
            strategy={
                "embedding": {
                    "sparse_accessor_class": "DownpourSparseValueAccessor"
                }
            })
        try:
            pre = FLEET_GLOBAL_DICT["emb_to_table"]
            FLEET_GLOBAL_DICT["emb_to_table"] = {}
            adam1.minimize([cost], [scope])
        except:
            FLEET_GLOBAL_DICT["emb_to_table"] = pre
            print("catch expected exception of empty emb_to_table")
        try:
            pre = FLEET_GLOBAL_DICT["emb_to_table"]
            FLEET_GLOBAL_DICT["emb_to_table"] = {}
            FLEET_GLOBAL_DICT["emb_to_table"]["emb1"] = 0
            adam1.minimize([cost], [scope])
        except:
            FLEET_GLOBAL_DICT["emb_to_table"] = pre
            print("catch expected exception of error emb_to_table")
        try:
            adam2 = fluid.optimizer.Adam(learning_rate=0.000005)
            adam2 = fleet.distributed_optimizer(adam2)
            adam2.supported_embedding_types = []
            adam2.minimize([cost], [scope])
        except:
            print("catch expected exception of embedding_types")
        try:
            adam3 = fluid.optimizer.Adam(learning_rate=0.000005)
            adam3 = fleet.distributed_optimizer(
                adam3,
                strategy={
                    "embedding": {
                        "sparse_accessor_class": "DownpourSparseValueAccessor",
                        "sparse_embedx_dim": 999
                    }
                })
            adam3.minimize([cost], [scope])
        except:
            print("catch expected exception of embedx_dim error")

        try:
            adam4 = fluid.optimizer.Adam(learning_rate=0.000005)
            adam4 = fleet.distributed_optimizer(
                adam4,
                strategy={
                    "embedding": {
                        "sparse_accessor_class": "DownpourCtrAccessor",
                        "sparse_embedx_dim": 999
                    }
                })
            adam4.minimize([cost], [scope])
        except:
            print("catch expected exception of embedx_dim error")
        train_program1 = fluid.Program()
        startup_program1 = fluid.Program()
        FLEET_GLOBAL_DICT["emb_to_accessor"] = {}
        with fluid.program_guard(train_program1, startup_program1):
            show = fluid.layers.data(name="show", shape=[-1, 1], \
                dtype="int64", lod_level=1, append_batch_size=False)
            with fleet_embedding(click_name=click.name):
                emb = fluid.layers.embedding(input=show, size=[1, 1], \
                    is_sparse=True, is_distributed=True, \
                    param_attr=fluid.ParamAttr(name="embedding"))
            with fleet_embedding(click_name=click.name):
                emb1 = fluid.embedding(input=show, size=[1, 1], \
                    is_sparse=True, is_distributed=True, \
                    param_attr=fluid.ParamAttr(name="embedding"))
Пример #25
0
    data = fluid.data(name='data', shape=[-1, 10], dtype='float32')
    fc = layers.fc(data, size=10)
    loss = layers.reduce_sum(fc)

    sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001)
    opt_out = sgd_optimizer.minimize(loss)

print_program(main_program, 'program.before')

grad_dict = {grad.name: grad for param, grad in opt_out[1]}

coalesce_program, grad_out_dict, grad_fused, fused_shape_var = create_coalesce_program(
    grad_dict)
print_program(coalesce_program, 'program.coalesce')

scope = fluid.Scope()
place = fluid.CPUPlace()
exe = fluid.Executor(place)

# initialize parameters
exe.run(start_program, scope=scope)

# pre-allocate coalesce buffer in scope and get the runtime buffer size
# coalesce_program could be merged with startup program
shape_array = exe.run(coalesce_program,
                      fetch_list=[fused_shape_var.name],
                      scope=scope)
runtime_shape = shape_array[0]

# rewrite the main program by replacing all original gradients to sliced variables
# from gradient-fused buffer, and update the buffer size by runtime shape
Пример #26
0
def create_fake_model(program_config):
    '''  Create a Paddle model(in memory) according to the given config.  '''
    paddle.enable_static()
    main_program_desc = core.ProgramDesc()
    util_program = fluid.Program()
    main_block_desc = main_program_desc.block(0)

    var_desc = main_block_desc.var(cpt.to_bytes("feed"))
    var_desc.set_type(core.VarDesc.VarType.FEED_MINIBATCH)
    var_desc.set_persistable(True)

    index = 0
    for name, tensor_config in program_config.inputs.items():
        var_desc = main_block_desc.var(cpt.to_bytes(name))
        var_desc.set_type(core.VarDesc.VarType.LOD_TENSOR)
        var_desc.set_dtype(convert_np_dtype_to_dtype_(tensor_config.dtype))
        var_desc.set_shape(tensor_config.shape)
        var_desc.set_need_check_feed(True)
        if tensor_config.lod is not None:
            var_desc.set_lod_level(len(tensor_config.lod))
        op_desc = main_block_desc._prepend_op()
        op_desc.set_type("feed")
        op_desc.set_input('X', ["feed"])
        op_desc.set_output('Out', [name])
        op_desc._set_attr("col", index)
        index = index + 1

    save_var_map = {}
    for name, tensor_config in program_config.weights.items():
        var_desc = main_block_desc.var(cpt.to_bytes(name))
        var_desc.set_type(core.VarDesc.VarType.LOD_TENSOR)
        var_desc.set_dtype(convert_np_dtype_to_dtype_(tensor_config.dtype))
        var_desc.set_shape(tensor_config.shape)
        var_desc.set_persistable(True)

        save_var_map[name] = util_program.global_block().create_parameter(
            dtype=tensor_config.dtype,
            shape=tensor_config.shape,
            type=core.VarDesc.VarType.LOD_TENSOR,
            name=name,
            initializer=NumpyArrayInitializer(tensor_config.data))
    in_vars = []
    for name in sorted(save_var_map.keys()):
        in_vars.append(save_var_map[name])

    out_var = util_program.global_block().create_var(
        type=core.VarDesc.VarType.RAW, name="out_var_0")
    out_var.desc.set_persistable(True)
    util_program.global_block().append_op(type='save_combine',
                                          inputs={'X': in_vars},
                                          outputs={'Y': out_var},
                                          attrs={
                                              'file_path': '',
                                              'save_to_memory': True
                                          })
    for op_config in program_config.ops:
        op_desc = main_block_desc.append_op()
        op_desc.set_type(op_config.type)
        for name, values in op_config.inputs.items():
            op_desc.set_input(name, values)
        for name, values in op_config.attrs.items():
            op_desc._set_attr(name, values)
        for name, values in op_config.outputs.items():
            op_desc.set_output(name, values)
            for v in values:
                var_desc = main_block_desc.var(cpt.to_bytes(v))
                var_desc.set_type(core.VarDesc.VarType.LOD_TENSOR)
                var_desc.set_dtype(convert_np_dtype_to_dtype_(np.float32))
                if op_config.outputs_dtype is not None and v in op_config.outputs_dtype.keys(
                ):
                    var_desc.set_dtype(
                        convert_np_dtype_to_dtype_(op_config.outputs_dtype[v]))

        op_desc.infer_var_type(main_block_desc)
        op_desc.infer_shape(main_block_desc)
        op_desc.check_attrs()

    for index, name in enumerate(program_config.outputs):
        var_desc = main_block_desc.var(cpt.to_bytes("fetch"))
        var_desc.set_type(core.VarDesc.VarType.FETCH_LIST)
        var_desc.set_need_check_feed(True)
        op_desc = main_block_desc.append_op()
        op_desc.set_type("fetch")
        op_desc.set_input('X', [name])
        op_desc.set_output('Out', ["fetch"])
        op_desc._set_attr("col", index)

    main_program_desc._set_version()
    paddle.fluid.core.save_op_version_info(main_program_desc)

    model = main_program_desc.serialize_to_string()

    util_program._sync_with_cpp()
    place = fluid.CPUPlace()
    executor = fluid.Executor(place)
    scope = fluid.Scope()
    with fluid.scope_guard(scope):
        executor.run(util_program)
        params = scope.find_var("out_var_0").get_bytes()
    return model, params
Пример #27
0
def infer_step(args, vocab_size, test_reader, use_cuda, i2w):
    """ inference function """
    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
    exe = fluid.Executor(place)
    emb_size = args.emb_size
    batch_size = args.batch_size
    with fluid.scope_guard(fluid.Scope()):
        main_program = fluid.Program()
        with fluid.program_guard(main_program):
            values, pred = net.infer_network(vocab_size, emb_size)
            for epoch in range(start_index, last_index + 1):
                for batchid in range(args.start_batch, args.end_batch):
                    copy_program = main_program.clone()
                    model_path = model_dir + "/pass-" + str(epoch) + (
                        '/batch-' + str(batchid * args.print_step))
                    fluid.load(copy_program, model_path, exe)
                    accum_num = 0
                    accum_num_sum = 0.0
                    t0 = time.time()
                    step_id = 0
                    for data in test_reader():
                        step_id += 1
                        b_size = len([dat[0] for dat in data])
                        wa = np.array([dat[0] for dat in data
                                       ]).astype("int64").reshape(b_size)
                        wb = np.array([dat[1] for dat in data
                                       ]).astype("int64").reshape(b_size)
                        wc = np.array([dat[2] for dat in data
                                       ]).astype("int64").reshape(b_size)

                        label = [dat[3] for dat in data]
                        input_word = [dat[4] for dat in data]
                        para = exe.run(
                            copy_program,
                            feed={
                                "analogy_a":
                                wa,
                                "analogy_b":
                                wb,
                                "analogy_c":
                                wc,
                                "all_label":
                                np.arange(vocab_size).reshape(vocab_size),
                            },
                            fetch_list=[pred.name, values],
                            return_numpy=False)
                        pre = np.array(para[0])
                        val = np.array(para[1])
                        for ii in range(len(label)):
                            top4 = pre[ii]
                            accum_num_sum += 1
                            for idx in top4:
                                if int(idx) in input_word[ii]:
                                    continue
                                if int(idx) == int(label[ii][0]):
                                    accum_num += 1
                                break
                        if step_id % 1 == 0:
                            print("step:%d %d " % (step_id, accum_num))
                    print("epoch:%d \t acc:%.3f " %
                          (epoch, 1.0 * accum_num / accum_num_sum))
                    t1 = time.time()
Пример #28
0
# Author: Acer Zhang
# Datetime:2020/5/10 14:19
# Copyright belongs to the author.
# Please indicate the source for reprinting.

import paddle.fluid as fluid
import numpy as np
import PIL.Image as Image

img_path = r"D:\DLExample\easy07_visual_feature_map\data\1.jpg"
save_model_path = "./model"

img1 = Image.open(img_path).convert('L')
img1 = np.array(img1).reshape(1, 1, 30, 15).astype(np.float32)  # NCHW格式
img1 /= 255  # 归一化以提升训练效果

# 防止Notebook中出现冲突等问题,使用新的ScopeS、来保证程序的健壮性。
new_scope = fluid.Scope()

place = fluid.CPUPlace()
exe = fluid.Executor(place)

with fluid.scope_guard(new_scope):
    # 读取预测模型
    infer_program, feed_name, fetch_list = fluid.io.load_inference_model(
        save_model_path, exe)
    outs = exe.run(program=infer_program,
                   feed={feed_name[0]: img1},
                   fetch_list=fetch_list)
print("概率分布:", np.round(outs[0][0], 2))  # 保留2位整数
print("推理结果:", np.argmax(outs[0][0]))  # 获取概率最高的标签索引
exe.run(fluid.default_startup_program())
##开始训练,迭代500次
for i in range(500):
    outs = exe.run(feed={
        'x': train_data,
        'y': y_true
    },
                   fetch_list=[y_predict.name, avg_cost.name])
    if i % 50 == 0:
        print('iter={:.0f},cost={}'.format(i, outs[1][0]))
# 存储训练结果
params_dirname = "result"
fluid.io.save_inference_model(params_dirname, ['x'], [y_predict], exe)

# 开始预测
infer_exe = fluid.Executor(cpu)
inference_scope = fluid.Scope()
# 加载训练好的模型
with fluid.scope_guard(inference_scope):
    [inference_program, feed_target_names,
     fetch_targets] = fluid.io.load_inference_model(params_dirname, infer_exe)

# 生成测试数据
test = np.array([[[9], [5], [2], [10]]]).astype('float32')
# 进行预测
results = infer_exe.run(inference_program,
                        feed={"x": test},
                        fetch_list=fetch_targets)
# 给出题目为 【9,5,2,10】 输出y=4*9+6*5+7*2+10*2的值
print("9a+5b+2c+10d={}".format(results[0][0]))
Пример #30
0
    def test_pslib_1(self):
        """Test cases for pslib."""
        import paddle.fluid as fluid
        from paddle.fluid.incubate.fleet.parameter_server.pslib import fleet
        from paddle.fluid.incubate.fleet.parameter_server.pslib import PSLib
        from paddle.fluid.incubate.fleet.base.role_maker import GeneralRoleMaker
        try:
            import netifaces
        except:
            print("warning: no netifaces, skip test_pslib_1")
            return
        os.environ["POD_IP"] = "127.0.0.1"
        os.environ["PADDLE_PORT"] = "36001"
        os.environ["TRAINING_ROLE"] = "TRAINER"
        os.environ["PADDLE_TRAINER_ENDPOINTS"] = "127.0.0.1:36001"
        os.environ["PADDLE_PSERVERS_IP_PORT_LIST"] = "127.0.0.1:36002"
        os.environ["PADDLE_TRAINER_ID"] = "0"
        role_maker = GeneralRoleMaker()
        #role_maker.generate_role()
        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        #fleet.init(role_maker)
        train_program = fluid.Program()
        startup_program = fluid.Program()
        scope = fluid.Scope()
        with fluid.program_guard(train_program, startup_program):
            show = fluid.layers.data(name="show", shape=[-1, 1], \
                dtype="int64", lod_level=1, append_batch_size=False)
            emb = fluid.layers.embedding(input=show, size=[1, 1], \
                is_sparse=True, is_distributed=True, \
                param_attr=fluid.ParamAttr(name="embedding"))
            fc = fluid.layers.fc(input=emb, size=1, act=None)
            label = fluid.layers.data(name="click", shape=[-1, 1], \
                dtype="int64", lod_level=1, append_batch_size=False)
            label_cast = fluid.layers.cast(label, dtype='float32')
            cost = fluid.layers.log_loss(fc, label_cast)
        try:
            adam = fluid.optimizer.Adam(learning_rate=0.000005)
            adam = fleet.distributed_optimizer(adam,
                                               strategy={
                                                   "embedding": {
                                                       "sparse_accessor_class":
                                                       "DownpourCtrAccessor"
                                                   }
                                               })
            adam.minimize([cost], [scope])
            fleet.run_server()
        except:
            print("do not support pslib test, skip")
            return
        try:
            # worker should call these methods instead of server
            # the following is only for test when with_pslib=off
            def test_func():
                """
                it is only a test function
                """
                return True

            fleet._role_maker.is_first_worker = test_func
            fleet._role_maker._barrier_worker = test_func
            fleet.save_model("./model_000")
            fleet.save_one_table(0, "./model_001")
            fleet.save_one_table(0, "./model_002", prefix="hahaha")
            fleet.load_model("./model_0003")
            fleet.load_one_table(0, "./model_004")
            fleet.confirm()
            fleet.revert()
        except:
            print("do not support pslib test, skip")
            return