Пример #1
0
    def test_api(self):
        if ver.mkl() == "ON" and 'Linux' in platform.platform():
            import paddle.fluid as fluid

            dict_size = 20
            data_t = fluid.layers.data(name='word',
                                       shape=[1],
                                       dtype='int64',
                                       lod_level=1)
            padding_idx = np.random.randint(1, 10)
            out = fluid.contrib.fused_embedding_seq_pool(
                input=data_t,
                size=[dict_size, 32],
                param_attr='w',
                padding_idx=padding_idx,
                is_sparse=False)

            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            # prepare input words' idx
            x_tensor = fluid.core.LoDTensor()
            idxs = np.random.randint(1, 10, (8)).astype("int64")

            x_tensor.set(idxs, place)
            x_tensor.set_recursive_sequence_lengths([[4, 4]])
            ret = exe.run(feed={'word': x_tensor}, fetch_list=[out])
Пример #2
0
 def test_check_grad(self):
     # TODO(wangzhongpu): support lod in dygraph mode
     if ver.mkl() == "ON" and 'Linux' in platform.platform():
         self.attrs = {'is_sparse': False}
         self.check_grad(['W'],
                         'Out',
                         no_grad_set=['Ids'],
                         check_dygraph=False)
Пример #3
0
 def test_check_grad(self):
     if ver.mkl() == "ON" and 'Linux' in platform.platform():
         ids = np.squeeze(self.ids, axis=2)
         padding_idx = np.random.choice(ids.flatten(), 1)[0]
         self.attrs = {'padding_idx': int(padding_idx), 'is_sparse': False}
         # TODO(wangzhongpu): support lod in dygraph mode
         self.check_grad(
             ['W'], 'Out', no_grad_set=['Ids'], check_dygraph=False)
 def test_check_output(self):
     if ver.mkl() == "ON" and 'Linux' in platform.platform():
         ids = np.squeeze(self.ids, axis=2)
         padding_idx = np.random.choice(ids.flatten(), 1)[0]
         output = list()
         index = 0
         for count in self.lod[0]:
             arr = ids[index:count + index]
             out = np.reshape(self.table[arr.flatten()],
                              [arr.shape[0], arr.shape[1], self.emb_size])
             idx = np.argwhere(arr == padding_idx)
             for item in idx:
                 out[item[0], item[1], :] = np.zeros(self.emb_size)
             output.append(np.sum(out, 0))
             index += count
         self.outputs = {
             'Out': np.reshape(
                 np.array(output), [len(self.lod[0]), 2 * self.emb_size])
         }
         self.attrs = {'padding_idx': int(padding_idx)}
         self.check_output()
 def test_check_grad(self):
     if ver.mkl() == "ON" and 'Linux' in platform.platform():
         ids = np.squeeze(self.ids, axis=2)
         padding_idx = np.random.choice(ids.flatten(), 1)[0]
         self.attrs = {'padding_idx': int(padding_idx), 'is_sparse': False}
         self.check_grad(['W'], 'Out', no_grad_set=('Ids'))
 def test_check_grad(self):
     if ver.mkl() == "ON" and 'Linux' in platform.platform():
         self.attrs = {'is_sparse': False}
         self.check_grad(['W'], 'Out', no_grad_set=('Ids'))