def test_api(self): if ver.mkl() == "ON" and 'Linux' in platform.platform(): import paddle.fluid as fluid dict_size = 20 data_t = fluid.layers.data(name='word', shape=[1], dtype='int64', lod_level=1) padding_idx = np.random.randint(1, 10) out = fluid.contrib.fused_embedding_seq_pool( input=data_t, size=[dict_size, 32], param_attr='w', padding_idx=padding_idx, is_sparse=False) place = fluid.CPUPlace() exe = fluid.Executor(place) exe.run(fluid.default_startup_program()) # prepare input words' idx x_tensor = fluid.core.LoDTensor() idxs = np.random.randint(1, 10, (8)).astype("int64") x_tensor.set(idxs, place) x_tensor.set_recursive_sequence_lengths([[4, 4]]) ret = exe.run(feed={'word': x_tensor}, fetch_list=[out])
def test_check_grad(self): # TODO(wangzhongpu): support lod in dygraph mode if ver.mkl() == "ON" and 'Linux' in platform.platform(): self.attrs = {'is_sparse': False} self.check_grad(['W'], 'Out', no_grad_set=['Ids'], check_dygraph=False)
def test_check_grad(self): if ver.mkl() == "ON" and 'Linux' in platform.platform(): ids = np.squeeze(self.ids, axis=2) padding_idx = np.random.choice(ids.flatten(), 1)[0] self.attrs = {'padding_idx': int(padding_idx), 'is_sparse': False} # TODO(wangzhongpu): support lod in dygraph mode self.check_grad( ['W'], 'Out', no_grad_set=['Ids'], check_dygraph=False)
def test_check_output(self): if ver.mkl() == "ON" and 'Linux' in platform.platform(): ids = np.squeeze(self.ids, axis=2) padding_idx = np.random.choice(ids.flatten(), 1)[0] output = list() index = 0 for count in self.lod[0]: arr = ids[index:count + index] out = np.reshape(self.table[arr.flatten()], [arr.shape[0], arr.shape[1], self.emb_size]) idx = np.argwhere(arr == padding_idx) for item in idx: out[item[0], item[1], :] = np.zeros(self.emb_size) output.append(np.sum(out, 0)) index += count self.outputs = { 'Out': np.reshape( np.array(output), [len(self.lod[0]), 2 * self.emb_size]) } self.attrs = {'padding_idx': int(padding_idx)} self.check_output()
def test_check_grad(self): if ver.mkl() == "ON" and 'Linux' in platform.platform(): ids = np.squeeze(self.ids, axis=2) padding_idx = np.random.choice(ids.flatten(), 1)[0] self.attrs = {'padding_idx': int(padding_idx), 'is_sparse': False} self.check_grad(['W'], 'Out', no_grad_set=('Ids'))
def test_check_grad(self): if ver.mkl() == "ON" and 'Linux' in platform.platform(): self.attrs = {'is_sparse': False} self.check_grad(['W'], 'Out', no_grad_set=('Ids'))