Пример #1
0
    def _test_static(self, place, kwargs):
        paddle.enable_static()

        best = float("-10000") if kwargs['mode'] == "max" else float("10000")
        current_lr = 1.0
        cooldown_counter = 0
        num_bad_epochs = 0
        var_list = [best, current_lr, cooldown_counter, num_bad_epochs]

        main_prog = paddle.static.Program()
        start_prog = paddle.static.Program()
        with paddle.static.program_guard(main_prog, start_prog):
            x = fluid.layers.create_global_var([1],
                                               1,
                                               'float32',
                                               persistable=True)
            paddle.increment(x)
            loss = paddle.sin(x)
            scheduler = paddle.optimizer.lr.ReduceOnPlateau(**kwargs)
            adam = paddle.optimizer.Adam(learning_rate=scheduler)
            adam.minimize(loss)
            lr_var = adam._global_learning_rate()
            test_prog = main_prog.clone()

        exe = paddle.static.Executor(place)
        exe.run(start_prog)

        for epoch in range(20):
            for batch_id in range(1):
                out, actual_lr = exe.run(main_prog,
                                         fetch_list=[loss.name, lr_var.name])
                expected_lr = reduce_lr_on_plateau(
                    kwargs['factor'], kwargs['threshold'], kwargs['cooldown'],
                    kwargs['patience'], kwargs['mode'],
                    kwargs['threshold_mode'], out[0], var_list)

            scheduler.step(out[0])
            actual_lr = scheduler()
            self.assertEqual(actual_lr, np.array(expected_lr))

        for epoch in range(10):
            for batch_id in range(1):
                out, actual_lr = exe.run(test_prog,
                                         fetch_list=[loss.name, lr_var.name])
                expected_lr = reduce_lr_on_plateau(
                    kwargs['factor'], kwargs['threshold'], kwargs['cooldown'],
                    kwargs['patience'], kwargs['mode'],
                    kwargs['threshold_mode'], out[0], var_list)
            scheduler.step(out[0])
            actual_lr = scheduler()
            self.assertEqual(actual_lr, np.array(expected_lr))
Пример #2
0
    def test_without_kernel_op(self):
        main_program = paddle.static.Program()
        startup_program = paddle.static.Program()
        with paddle.static.program_guard(main_program, startup_program):
            i = paddle.full(shape=[1], dtype='int64', fill_value=0)
            loop_len = paddle.full(shape=[1], dtype='int64', fill_value=10)
            cond = paddle.less_than(x=i, y=loop_len)

            with warnings.catch_warnings(record=True) as w:
                warnings.simplefilter("always")
                with paddle.static.device_guard("cpu"):
                    while_op = fluid.layers.While(cond=cond)
                    with while_op.block():
                        i = paddle.increment(x=i, value=1)
                        fluid.layers.less_than(x=i, y=loop_len, cond=cond)

        warning = "The Op(while) is not support to set device."
        warning_num = get_vaild_warning_num(warning, w)
        assert warning_num == 1

        all_ops = main_program.global_block().ops
        device_attr_name = core.op_proto_and_checker_maker.kOpDeviceAttrName()
        for op in all_ops:
            if op.type == 'while':
                self.assertEqual(op.desc.attr(device_attr_name), "")

        execute(main_program, startup_program)
Пример #3
0
 def test_increment(self):
     if fluid.core.is_compiled_with_cuda():
         paddle.enable_static()
         with paddle.fluid.device_guard("gpu:0"):
             x = paddle.fluid.layers.fill_constant([1], "float32", 0)
         with paddle.fluid.device_guard("cpu"):
             x = paddle.increment(x)
         exe = paddle.static.Executor(paddle.CUDAPlace(0))
         a, = exe.run(paddle.static.default_main_program(), fetch_list=[x])
         paddle.disable_static()
         self.assertEqual(a[0], 1)
Пример #4
0
    def test_increment(self):
        if paddle.fluid.core.is_compiled_with_cuda():
            with paddle.fluid.device_guard("gpu:0"):
                x = paddle.fluid.layers.fill_constant([1], "float32", 0)
            with paddle.fluid.device_guard("cpu"):
                x = paddle.increment(x)
            exe = paddle.static.Executor(paddle.CUDAPlace(0))
            os.environ['FLAGS_USE_STANDALONE_EXECUTOR'] = '1'

            for i in range(10):
                a, = exe.run(paddle.static.default_main_program(),
                             fetch_list=[x])
                self.assertEqual(a[0], 1)

            del os.environ['FLAGS_USE_STANDALONE_EXECUTOR']
Пример #5
0
def loop_body(i, loop_len, input_array):
    pre_input = paddle.tensor.array_read(array=input_array, i=i)
    mlp_while0 = MLPLayer(hidden_size=hidden_size,
                          intermediate_size=4 * hidden_size,
                          dropout_ratio=0.1,
                          initializer_range=0.02)

    mlp_while1 = MLPLayer(hidden_size=hidden_size,
                          intermediate_size=4 * hidden_size,
                          dropout_ratio=0.1,
                          initializer_range=0.02)

    output = mlp_while0(pre_input)
    cur_pred = mlp_while1(output)
    # 更新循环条件
    i = paddle.increment(x=i, value=1)
    paddle.tensor.array_write(cur_pred, array=input_array, i=i)
    return i, loop_len, input_array
    def test_tensor_patch_method(self):
        paddle.disable_static()
        x_np = np.random.uniform(-1, 1, [2, 3]).astype(self.dtype)
        y_np = np.random.uniform(-1, 1, [2, 3]).astype(self.dtype)
        z_np = np.random.uniform(-1, 1, [6, 9]).astype(self.dtype)

        x = paddle.to_tensor(x_np)
        y = paddle.to_tensor(y_np)
        z = paddle.to_tensor(z_np)

        a = paddle.to_tensor([[1, 1], [2, 2], [3, 3]])
        b = paddle.to_tensor([[1, 1], [2, 2], [3, 3]])

        # 1. Unary operation for Tensor
        self.assertEqual(x.dim(), 2)
        self.assertEqual(x.ndimension(), 2)
        self.assertEqual(x.ndim, 2)
        self.assertEqual(x.size, 6)
        self.assertEqual(x.numel(), 6)
        self.assertTrue(np.array_equal(x.exp().numpy(), paddle.exp(x).numpy()))
        self.assertTrue(
            np.array_equal(x.tanh().numpy(),
                           paddle.tanh(x).numpy()))
        self.assertTrue(
            np.array_equal(x.atan().numpy(),
                           paddle.atan(x).numpy()))
        self.assertTrue(np.array_equal(x.abs().numpy(), paddle.abs(x).numpy()))
        m = x.abs()
        self.assertTrue(
            np.array_equal(m.sqrt().numpy(),
                           paddle.sqrt(m).numpy()))
        self.assertTrue(
            np.array_equal(m.rsqrt().numpy(),
                           paddle.rsqrt(m).numpy()))
        self.assertTrue(
            np.array_equal(x.ceil().numpy(),
                           paddle.ceil(x).numpy()))
        self.assertTrue(
            np.array_equal(x.floor().numpy(),
                           paddle.floor(x).numpy()))
        self.assertTrue(np.array_equal(x.cos().numpy(), paddle.cos(x).numpy()))
        self.assertTrue(
            np.array_equal(x.acos().numpy(),
                           paddle.acos(x).numpy()))
        self.assertTrue(
            np.array_equal(x.asin().numpy(),
                           paddle.asin(x).numpy()))
        self.assertTrue(np.array_equal(x.sin().numpy(), paddle.sin(x).numpy()))
        self.assertTrue(
            np.array_equal(x.sinh().numpy(),
                           paddle.sinh(x).numpy()))
        self.assertTrue(
            np.array_equal(x.cosh().numpy(),
                           paddle.cosh(x).numpy()))
        self.assertTrue(
            np.array_equal(x.round().numpy(),
                           paddle.round(x).numpy()))
        self.assertTrue(
            np.array_equal(x.reciprocal().numpy(),
                           paddle.reciprocal(x).numpy()))
        self.assertTrue(
            np.array_equal(x.square().numpy(),
                           paddle.square(x).numpy()))
        self.assertTrue(
            np.array_equal(x.rank().numpy(),
                           paddle.rank(x).numpy()))
        self.assertTrue(
            np.array_equal(x[0].t().numpy(),
                           paddle.t(x[0]).numpy()))
        self.assertTrue(
            np.array_equal(x.asinh().numpy(),
                           paddle.asinh(x).numpy()))
        ### acosh(x) = nan, need to change input
        t_np = np.random.uniform(1, 2, [2, 3]).astype(self.dtype)
        t = paddle.to_tensor(t_np)
        self.assertTrue(
            np.array_equal(t.acosh().numpy(),
                           paddle.acosh(t).numpy()))
        self.assertTrue(
            np.array_equal(x.atanh().numpy(),
                           paddle.atanh(x).numpy()))
        d = paddle.to_tensor([[1.2285208, 1.3491015, 1.4899898],
                              [1.30058, 1.0688717, 1.4928783],
                              [1.0958099, 1.3724753, 1.8926544]])
        d = d.matmul(d.t())
        # ROCM not support cholesky
        if not fluid.core.is_compiled_with_rocm():
            self.assertTrue(
                np.array_equal(d.cholesky().numpy(),
                               paddle.cholesky(d).numpy()))

        self.assertTrue(
            np.array_equal(x.is_empty().numpy(),
                           paddle.is_empty(x).numpy()))
        self.assertTrue(
            np.array_equal(x.isfinite().numpy(),
                           paddle.isfinite(x).numpy()))
        self.assertTrue(
            np.array_equal(
                x.cast('int32').numpy(),
                paddle.cast(x, 'int32').numpy()))
        self.assertTrue(
            np.array_equal(
                x.expand([3, 2, 3]).numpy(),
                paddle.expand(x, [3, 2, 3]).numpy()))
        self.assertTrue(
            np.array_equal(
                x.tile([2, 2]).numpy(),
                paddle.tile(x, [2, 2]).numpy()))
        self.assertTrue(
            np.array_equal(x.flatten().numpy(),
                           paddle.flatten(x).numpy()))
        index = paddle.to_tensor([0, 1])
        self.assertTrue(
            np.array_equal(
                x.gather(index).numpy(),
                paddle.gather(x, index).numpy()))
        index = paddle.to_tensor([[0, 1], [1, 2]])
        self.assertTrue(
            np.array_equal(
                x.gather_nd(index).numpy(),
                paddle.gather_nd(x, index).numpy()))
        self.assertTrue(
            np.array_equal(
                x.reverse([0, 1]).numpy(),
                paddle.reverse(x, [0, 1]).numpy()))
        self.assertTrue(
            np.array_equal(
                a.reshape([3, 2]).numpy(),
                paddle.reshape(a, [3, 2]).numpy()))
        self.assertTrue(
            np.array_equal(
                x.slice([0, 1], [0, 0], [1, 2]).numpy(),
                paddle.slice(x, [0, 1], [0, 0], [1, 2]).numpy()))
        self.assertTrue(
            np.array_equal(
                x.split(2)[0].numpy(),
                paddle.split(x, 2)[0].numpy()))
        m = paddle.to_tensor(
            np.random.uniform(-1, 1, [1, 6, 1, 1]).astype(self.dtype))
        self.assertTrue(
            np.array_equal(
                m.squeeze([]).numpy(),
                paddle.squeeze(m, []).numpy()))
        self.assertTrue(
            np.array_equal(
                m.squeeze([1, 2]).numpy(),
                paddle.squeeze(m, [1, 2]).numpy()))
        m = paddle.to_tensor([2, 3, 3, 1, 5, 3], 'float32')
        self.assertTrue(
            np.array_equal(m.unique()[0].numpy(),
                           paddle.unique(m)[0].numpy()))
        self.assertTrue(
            np.array_equal(
                m.unique(return_counts=True)[1],
                paddle.unique(m, return_counts=True)[1]))
        self.assertTrue(np.array_equal(x.flip([0]), paddle.flip(x, [0])))
        self.assertTrue(np.array_equal(x.unbind(0), paddle.unbind(x, 0)))
        self.assertTrue(np.array_equal(x.roll(1), paddle.roll(x, 1)))
        self.assertTrue(np.array_equal(x.cumsum(1), paddle.cumsum(x, 1)))
        m = paddle.to_tensor(1)
        self.assertTrue(np.array_equal(m.increment(), paddle.increment(m)))
        m = x.abs()
        self.assertTrue(np.array_equal(m.log(), paddle.log(m)))
        self.assertTrue(np.array_equal(x.pow(2), paddle.pow(x, 2)))
        self.assertTrue(np.array_equal(x.reciprocal(), paddle.reciprocal(x)))

        # 2. Binary operation
        self.assertTrue(
            np.array_equal(x.divide(y).numpy(),
                           paddle.divide(x, y).numpy()))
        self.assertTrue(
            np.array_equal(
                x.matmul(y, True, False).numpy(),
                paddle.matmul(x, y, True, False).numpy()))
        self.assertTrue(
            np.array_equal(
                x.norm(p='fro', axis=[0, 1]).numpy(),
                paddle.norm(x, p='fro', axis=[0, 1]).numpy()))
        self.assertTrue(
            np.array_equal(x.dist(y).numpy(),
                           paddle.dist(x, y).numpy()))
        self.assertTrue(
            np.array_equal(x.cross(y).numpy(),
                           paddle.cross(x, y).numpy()))
        m = x.expand([2, 2, 3])
        n = y.expand([2, 2, 3]).transpose([0, 2, 1])
        self.assertTrue(
            np.array_equal(m.bmm(n).numpy(),
                           paddle.bmm(m, n).numpy()))
        self.assertTrue(
            np.array_equal(
                x.histogram(5, -1, 1).numpy(),
                paddle.histogram(x, 5, -1, 1).numpy()))
        self.assertTrue(
            np.array_equal(x.equal(y).numpy(),
                           paddle.equal(x, y).numpy()))
        self.assertTrue(
            np.array_equal(
                x.greater_equal(y).numpy(),
                paddle.greater_equal(x, y).numpy()))
        self.assertTrue(
            np.array_equal(
                x.greater_than(y).numpy(),
                paddle.greater_than(x, y).numpy()))
        self.assertTrue(
            np.array_equal(
                x.less_equal(y).numpy(),
                paddle.less_equal(x, y).numpy()))
        self.assertTrue(
            np.array_equal(
                x.less_than(y).numpy(),
                paddle.less_than(x, y).numpy()))
        self.assertTrue(
            np.array_equal(
                x.not_equal(y).numpy(),
                paddle.not_equal(x, y).numpy()))
        self.assertTrue(
            np.array_equal(
                x.equal_all(y).numpy(),
                paddle.equal_all(x, y).numpy()))
        self.assertTrue(
            np.array_equal(
                x.allclose(y).numpy(),
                paddle.allclose(x, y).numpy()))
        m = x.expand([2, 2, 3])
        self.assertTrue(
            np.array_equal(
                x.expand_as(m).numpy(),
                paddle.expand_as(x, m).numpy()))
        index = paddle.to_tensor([2, 1, 0])
        self.assertTrue(
            np.array_equal(
                a.scatter(index, b).numpy(),
                paddle.scatter(a, index, b).numpy()))

        # 3. Bool tensor operation
        x = paddle.to_tensor([[True, False], [True, False]])
        y = paddle.to_tensor([[False, False], [False, True]])
        self.assertTrue(
            np.array_equal(
                x.logical_and(y).numpy(),
                paddle.logical_and(x, y).numpy()))
        self.assertTrue(
            np.array_equal(
                x.logical_not(y).numpy(),
                paddle.logical_not(x, y).numpy()))
        self.assertTrue(
            np.array_equal(
                x.logical_or(y).numpy(),
                paddle.logical_or(x, y).numpy()))
        self.assertTrue(
            np.array_equal(
                x.logical_xor(y).numpy(),
                paddle.logical_xor(x, y).numpy()))
        self.assertTrue(
            np.array_equal(
                x.logical_and(y).numpy(),
                paddle.logical_and(x, y).numpy()))
        a = paddle.to_tensor([[1, 2], [3, 4]])
        b = paddle.to_tensor([[4, 3], [2, 1]])
        self.assertTrue(
            np.array_equal(
                x.where(a, b).numpy(),
                paddle.where(x, a, b).numpy()))

        x_np = np.random.randn(3, 6, 9, 7)
        x = paddle.to_tensor(x_np)
        x_T = x.T
        self.assertTrue(x_T.shape, [7, 9, 6, 3])
        self.assertTrue(np.array_equal(x_T.numpy(), x_np.T))

        self.assertTrue(inspect.ismethod(a.dot))
        self.assertTrue(inspect.ismethod(a.logsumexp))
        self.assertTrue(inspect.ismethod(a.multiplex))
        self.assertTrue(inspect.ismethod(a.prod))
        self.assertTrue(inspect.ismethod(a.scale))
        self.assertTrue(inspect.ismethod(a.stanh))
        self.assertTrue(inspect.ismethod(a.add_n))
        self.assertTrue(inspect.ismethod(a.max))
        self.assertTrue(inspect.ismethod(a.maximum))
        self.assertTrue(inspect.ismethod(a.min))
        self.assertTrue(inspect.ismethod(a.minimum))
        self.assertTrue(inspect.ismethod(a.floor_divide))
        self.assertTrue(inspect.ismethod(a.remainder))
        self.assertTrue(inspect.ismethod(a.floor_mod))
        self.assertTrue(inspect.ismethod(a.multiply))
        self.assertTrue(inspect.ismethod(a.logsumexp))
        self.assertTrue(inspect.ismethod(a.inverse))
        self.assertTrue(inspect.ismethod(a.log1p))
        self.assertTrue(inspect.ismethod(a.erf))
        self.assertTrue(inspect.ismethod(a.addmm))
        self.assertTrue(inspect.ismethod(a.clip))
        self.assertTrue(inspect.ismethod(a.trace))
        self.assertTrue(inspect.ismethod(a.kron))
        self.assertTrue(inspect.ismethod(a.isinf))
        self.assertTrue(inspect.ismethod(a.isnan))
        self.assertTrue(inspect.ismethod(a.concat))
        self.assertTrue(inspect.ismethod(a.broadcast_to))
        self.assertTrue(inspect.ismethod(a.scatter_nd_add))
        self.assertTrue(inspect.ismethod(a.scatter_nd))
        self.assertTrue(inspect.ismethod(a.shard_index))
        self.assertTrue(inspect.ismethod(a.chunk))
        self.assertTrue(inspect.ismethod(a.stack))
        self.assertTrue(inspect.ismethod(a.strided_slice))
        self.assertTrue(inspect.ismethod(a.unsqueeze))
        self.assertTrue(inspect.ismethod(a.unstack))
        self.assertTrue(inspect.ismethod(a.argmax))
        self.assertTrue(inspect.ismethod(a.argmin))
        self.assertTrue(inspect.ismethod(a.argsort))
        self.assertTrue(inspect.ismethod(a.masked_select))
        self.assertTrue(inspect.ismethod(a.topk))
        self.assertTrue(inspect.ismethod(a.index_select))
        self.assertTrue(inspect.ismethod(a.nonzero))
        self.assertTrue(inspect.ismethod(a.sort))
        self.assertTrue(inspect.ismethod(a.index_sample))
        self.assertTrue(inspect.ismethod(a.mean))
        self.assertTrue(inspect.ismethod(a.std))
        self.assertTrue(inspect.ismethod(a.numel))
Пример #7
0
    def test_tensor_patch_method(self):
        paddle.disable_static()
        x_np = np.random.uniform(-1, 1, [2, 3]).astype(self.dtype)
        y_np = np.random.uniform(-1, 1, [2, 3]).astype(self.dtype)
        z_np = np.random.uniform(-1, 1, [6, 9]).astype(self.dtype)

        x = paddle.to_tensor(x_np)
        y = paddle.to_tensor(y_np)
        z = paddle.to_tensor(z_np)

        a = paddle.to_tensor([[1, 1], [2, 2], [3, 3]])
        b = paddle.to_tensor([[1, 1], [2, 2], [3, 3]])

        # 1. Unary operation for Tensor
        self.assertEqual(x.dim(), 2)
        self.assertEqual(x.ndimension(), 2)
        self.assertEqual(x.ndim, 2)
        self.assertEqual(x.size(), [2, 3])
        self.assertTrue(
            np.array_equal(x.sigmoid().numpy(),
                           fluid.layers.sigmoid(x).numpy()))
        self.assertTrue(
            np.array_equal(x.logsigmoid().numpy(),
                           fluid.layers.logsigmoid(x).numpy()))
        self.assertTrue(np.array_equal(x.exp().numpy(), paddle.exp(x).numpy()))
        self.assertTrue(
            np.array_equal(x.tanh().numpy(),
                           paddle.tanh(x).numpy()))
        self.assertTrue(
            np.array_equal(x.atan().numpy(),
                           paddle.atan(x).numpy()))
        self.assertTrue(
            np.array_equal(x.tanh_shrink().numpy(),
                           fluid.layers.tanh_shrink(x).numpy()))
        self.assertTrue(np.array_equal(x.abs().numpy(), paddle.abs(x).numpy()))
        m = x.abs()
        self.assertTrue(
            np.array_equal(m.sqrt().numpy(),
                           paddle.sqrt(m).numpy()))
        self.assertTrue(
            np.array_equal(m.rsqrt().numpy(),
                           paddle.rsqrt(m).numpy()))
        self.assertTrue(
            np.array_equal(x.ceil().numpy(),
                           paddle.ceil(x).numpy()))
        self.assertTrue(
            np.array_equal(x.floor().numpy(),
                           paddle.floor(x).numpy()))
        self.assertTrue(np.array_equal(x.cos().numpy(), paddle.cos(x).numpy()))
        self.assertTrue(
            np.array_equal(x.acos().numpy(),
                           paddle.acos(x).numpy()))
        self.assertTrue(
            np.array_equal(x.asin().numpy(),
                           paddle.asin(x).numpy()))
        self.assertTrue(np.array_equal(x.sin().numpy(), paddle.sin(x).numpy()))
        self.assertTrue(
            np.array_equal(x.sinh().numpy(),
                           paddle.sinh(x).numpy()))
        self.assertTrue(
            np.array_equal(x.cosh().numpy(),
                           paddle.cosh(x).numpy()))
        self.assertTrue(
            np.array_equal(x.round().numpy(),
                           paddle.round(x).numpy()))
        self.assertTrue(
            np.array_equal(x.reciprocal().numpy(),
                           paddle.reciprocal(x).numpy()))
        self.assertTrue(
            np.array_equal(x.square().numpy(),
                           paddle.square(x).numpy()))
        self.assertTrue(
            np.array_equal(x.softplus().numpy(),
                           fluid.layers.softplus(x).numpy()))
        self.assertTrue(
            np.array_equal(x.softsign().numpy(),
                           fluid.layers.softsign(x).numpy()))
        self.assertTrue(
            np.array_equal(x.rank().numpy(),
                           paddle.rank(x).numpy()))
        self.assertTrue(
            np.array_equal(x[0].t().numpy(),
                           paddle.t(x[0]).numpy()))
        m = paddle.to_tensor(np.random.uniform(1, 2, [3, 3]), 'float32')
        m = m.matmul(m.t())
        self.assertTrue(
            np.array_equal(m.cholesky().numpy(),
                           paddle.cholesky(m).numpy()))

        self.assertTrue(
            np.array_equal(x.is_empty().numpy(),
                           paddle.is_empty(x).numpy()))
        self.assertTrue(
            np.array_equal(x.isfinite().numpy(),
                           paddle.isfinite(x).numpy()))
        self.assertTrue(
            np.array_equal(
                x.cast('int32').numpy(),
                paddle.cast(x, 'int32').numpy()))
        self.assertTrue(
            np.array_equal(
                x.expand([3, 2, 3]).numpy(),
                paddle.expand(x, [3, 2, 3]).numpy()))
        self.assertTrue(
            np.array_equal(
                x.tile([2, 2]).numpy(),
                paddle.tile(x, [2, 2]).numpy()))
        self.assertTrue(
            np.array_equal(x.flatten().numpy(),
                           paddle.flatten(x).numpy()))
        index = paddle.to_tensor([0, 1])
        self.assertTrue(
            np.array_equal(
                x.gather(index).numpy(),
                paddle.gather(x, index).numpy()))
        index = paddle.to_tensor([[0, 1], [1, 2]])
        self.assertTrue(
            np.array_equal(
                x.gather_nd(index).numpy(),
                paddle.gather_nd(x, index).numpy()))
        self.assertTrue(
            np.array_equal(
                x.reverse([0, 1]).numpy(),
                paddle.reverse(x, [0, 1]).numpy()))
        self.assertTrue(
            np.array_equal(
                a.reshape([3, 2]).numpy(),
                paddle.reshape(a, [3, 2]).numpy()))
        self.assertTrue(
            np.array_equal(
                x.slice([0, 1], [0, 0], [1, 2]).numpy(),
                paddle.slice(x, [0, 1], [0, 0], [1, 2]).numpy()))
        self.assertTrue(
            np.array_equal(
                x.split(2)[0].numpy(),
                paddle.split(x, 2)[0].numpy()))
        m = paddle.to_tensor(
            np.random.uniform(-1, 1, [1, 6, 1, 1]).astype(self.dtype))
        self.assertTrue(
            np.array_equal(
                m.squeeze([]).numpy(),
                paddle.squeeze(m, []).numpy()))
        self.assertTrue(
            np.array_equal(
                m.squeeze([1, 2]).numpy(),
                paddle.squeeze(m, [1, 2]).numpy()))
        m = paddle.to_tensor([2, 3, 3, 1, 5, 3], 'float32')
        self.assertTrue(
            np.array_equal(m.unique()[0].numpy(),
                           paddle.unique(m)[0].numpy()))
        self.assertTrue(
            np.array_equal(m.unique_with_counts()[2],
                           paddle.unique_with_counts(m)[2]))
        self.assertTrue(np.array_equal(x.flip([0]), paddle.flip(x, [0])))
        self.assertTrue(np.array_equal(x.unbind(0), paddle.unbind(x, 0)))
        self.assertTrue(np.array_equal(x.roll(1), paddle.roll(x, 1)))
        self.assertTrue(np.array_equal(x.cumsum(1), paddle.cumsum(x, 1)))
        m = paddle.to_tensor(1)
        self.assertTrue(np.array_equal(m.increment(), paddle.increment(m)))
        m = x.abs()
        self.assertTrue(np.array_equal(m.log(), paddle.log(m)))
        self.assertTrue(np.array_equal(x.pow(2), paddle.pow(x, 2)))
        self.assertTrue(np.array_equal(x.reciprocal(), paddle.reciprocal(x)))

        # 2. Binary operation
        self.assertTrue(
            np.array_equal(
                x.matmul(y, True, False).numpy(),
                paddle.matmul(x, y, True, False).numpy()))
        self.assertTrue(
            np.array_equal(
                x.norm(p='fro', axis=[0, 1]).numpy(),
                paddle.norm(x, p='fro', axis=[0, 1]).numpy()))
        self.assertTrue(
            np.array_equal(x.dist(y).numpy(),
                           paddle.dist(x, y).numpy()))
        self.assertTrue(
            np.array_equal(x.cross(y).numpy(),
                           paddle.cross(x, y).numpy()))
        m = x.expand([2, 2, 3])
        n = y.expand([2, 2, 3]).transpose([0, 2, 1])
        self.assertTrue(
            np.array_equal(m.bmm(n).numpy(),
                           paddle.bmm(m, n).numpy()))
        self.assertTrue(
            np.array_equal(
                x.histogram(5, -1, 1).numpy(),
                paddle.histogram(x, 5, -1, 1).numpy()))
        self.assertTrue(
            np.array_equal(x.equal(y).numpy(),
                           paddle.equal(x, y).numpy()))
        self.assertTrue(
            np.array_equal(
                x.greater_equal(y).numpy(),
                paddle.greater_equal(x, y).numpy()))
        self.assertTrue(
            np.array_equal(
                x.greater_than(y).numpy(),
                paddle.greater_than(x, y).numpy()))
        self.assertTrue(
            np.array_equal(
                x.less_equal(y).numpy(),
                paddle.less_equal(x, y).numpy()))
        self.assertTrue(
            np.array_equal(
                x.less_than(y).numpy(),
                paddle.less_than(x, y).numpy()))
        self.assertTrue(
            np.array_equal(
                x.not_equal(y).numpy(),
                paddle.not_equal(x, y).numpy()))
        self.assertTrue(
            np.array_equal(
                x.equal_all(y).numpy(),
                paddle.equal_all(x, y).numpy()))
        self.assertTrue(
            np.array_equal(
                x.allclose(y).numpy(),
                paddle.allclose(x, y).numpy()))
        m = x.expand([2, 2, 3])
        self.assertTrue(
            np.array_equal(
                x.expand_as(m).numpy(),
                paddle.expand_as(x, m).numpy()))
        index = paddle.to_tensor([2, 1, 0])
        self.assertTrue(
            np.array_equal(
                a.scatter(index, b).numpy(),
                paddle.scatter(a, index, b).numpy()))

        # 3. Bool tensor operation
        x = paddle.to_tensor([[True, False], [True, False]])
        y = paddle.to_tensor([[False, False], [False, True]])
        self.assertTrue(
            np.array_equal(x.reduce_all().numpy(),
                           paddle.reduce_all(x).numpy()))
        self.assertTrue(
            np.array_equal(x.reduce_any().numpy(),
                           paddle.reduce_any(x).numpy()))
        self.assertTrue(
            np.array_equal(
                x.logical_and(y).numpy(),
                paddle.logical_and(x, y).numpy()))
        self.assertTrue(
            np.array_equal(
                x.logical_not(y).numpy(),
                paddle.logical_not(x, y).numpy()))
        self.assertTrue(
            np.array_equal(
                x.logical_or(y).numpy(),
                paddle.logical_or(x, y).numpy()))
        self.assertTrue(
            np.array_equal(
                x.logical_xor(y).numpy(),
                paddle.logical_xor(x, y).numpy()))
        self.assertTrue(
            np.array_equal(
                x.logical_and(y).numpy(),
                paddle.logical_and(x, y).numpy()))