Пример #1
0
def mm_backwardcorrect_sparse_embed(sparseX: FloatTensor,
                                    denseY: paddle.fluid.dygraph.core.VarBase):
    update_inds = sparseX.indices[0]
    updates = paddle.nn.functional.embedding(
        sparseX.indices[1], denseY, sparse=False) * sparseX.values.view(-1, 1)
    ret_Mat2 = paddle.scatter_nd(paddle.reshape(update_inds, (-1, 1)), updates,
                                 (sparseX.shape[0], denseY.shape[1]))

    return paddorch.convertTensor(ret_Mat2)
Пример #2
0
def linear(input, weight, bias=None):
    if input.shape[-1]!=weight.shape[0]:
        weight=paddle.transpose(weight,[1,0])

    layer_obj=fluid.dygraph.Linear(input.shape[-1],weight.shape[1])
    fluid.layers.assign(weight,layer_obj.weight)
    if bias is not None:
        fluid.layers.assign(bias, layer_obj.bias)
    return paddorch.convertTensor(layer_obj(input.astype("float32")))
Пример #3
0
def _add_undirected_graph_positional_embedding(g, hidden_size, retry=10):
    # We use eigenvectors of normalized graph laplacian as vertex features.
    # It could be viewed as a generalization of positional embedding in the
    # attention is all you need paper.
    # Recall that the eignvectors of normalized laplacian of a line graph are cos/sin functions.
    # See section 2.4 of http://www.cs.yale.edu/homes/spielman/561/2009/lect02-09.pdf
    n = g.number_of_nodes()
    adj = g.adjacency_matrix_scipy(transpose=False,
                                   return_edge_ids=False).astype(float)
    norm = sparse.diags(dgl.backend.asnumpy(g.in_degrees()).clip(1)**-0.5,
                        dtype=float)
    laplacian = norm * adj * norm
    k = min(n - 2, hidden_size)
    x = eigen_decomposision(n, k, laplacian, hidden_size, retry)
    g.ndata["pos_undirected"] = torch.convertTensor(x)
    return g
Пример #4
0
def from_dlpack(dlpack):
    tensor_from_dlpack = fluid.core.from_dlpack(dlpack)
    place = tensor_from_dlpack._place()
    if True:  # "win" in platform: # CPU env
        if "int32" in str(tensor_from_dlpack):
            return paddorch.convertTensor(
                paddle.to_tensor(np.array(tensor_from_dlpack), dtype="int32"))
        else:
            return paddorch.Tensor(
                paddle.to_tensor(np.array(tensor_from_dlpack)))
    else:
        with paddle.fluid.dygraph.guard(place=place):
            tensor_from_dlpack.__class__ = paddle.fluid.LoDTensor
            ret = paddle.Tensor(tensor_from_dlpack)
            if "int32" in str(tensor_from_dlpack):
                ret = paddle.to_tensor(ret, dtype="int32")
            tensor_from_dlpack.__class__ = paddle.fluid.core_avx.Tensor
        return ret
Пример #5
0
def test_finetune(epoch, valid_loader, model, output_layer, criterion, sw,
                  opt):
    n_batch = len(valid_loader)
    model.eval()
    output_layer.eval()

    epoch_loss_meter = AverageMeter()
    epoch_f1_meter = AverageMeter()

    for idx, batch in enumerate(valid_loader):
        graph_q, y = batch

        bsz = graph_q.batch_size

        # ===================forward=====================

        with torch.no_grad():
            feat_q = model(graph_q)
            assert feat_q.shape == (graph_q.batch_size, opt.hidden_size)
            out = output_layer(feat_q)
        loss = torch.convertTensor(criterion(out, y))

        preds = out.argmax(dim=1)
        f1 = f1_score(y.cpu().numpy(), preds.cpu().numpy(), average="micro")

        # ===================meters=====================
        epoch_loss_meter.update(loss.item(), bsz)
        epoch_f1_meter.update(f1, bsz)

    global_step = (epoch + 1) * n_batch
    sw.add_scalar("ft_loss/valid", epoch_loss_meter.avg, global_step)
    sw.add_scalar("ft_f1/valid", epoch_f1_meter.avg, global_step)
    print(opt.model_folder)
    print(
        f"Epoch {epoch}, loss {epoch_loss_meter.avg:.3f}, f1 {epoch_f1_meter.avg:.3f}"
    )
    return epoch_loss_meter.avg, epoch_f1_meter.avg
Пример #6
0
def normalize(input, p=2, dim=1, eps=1e-12, out=None):
    return torch.convertTensor( input/paddle.norm(input,p,axis=dim,keepdim=True))
Пример #7
0
import paddorch

arr = paddorch.convertTensor(1.0 / paddorch.arange(1, 30))
print(arr)

arr[arr > 0.1] = 0.0
print(arr)

arr[paddorch.isfinite(arr)] = 1.0
print(arr)

arr[paddorch.isinf(arr)] = 2.0
print(arr)

arr = paddorch.convertTensor(1.0 / paddorch.arange(1, 31)).view(-1, 5, 2)
print("before", arr)
arr[:, 2, :] = 999
print("after", arr)
Пример #8
0
def train_finetune(
    epoch,
    train_loader,
    model,
    output_layer,
    criterion,
    optimizer,
    output_layer_optimizer,
    sw,
    opt,
):
    """
    one epoch training for moco
    """
    n_batch = len(train_loader)
    model.train()
    output_layer.train()

    batch_time = AverageMeter()
    data_time = AverageMeter()
    loss_meter = AverageMeter()
    f1_meter = AverageMeter()
    epoch_loss_meter = AverageMeter()
    epoch_f1_meter = AverageMeter()
    prob_meter = AverageMeter()
    graph_size = AverageMeter()
    max_num_nodes = 0
    max_num_edges = 0

    end = time.time()
    for idx, batch in enumerate(train_loader):
        data_time.update(time.time() - end)
        graph_q, y = batch

        graph_q.to(torch.device(opt.gpu))
        y = y.to(torch.device(opt.gpu))

        bsz = graph_q.batch_size

        # ===================forward=====================

        feat_q = model(graph_q)

        assert feat_q.shape == (graph_q.batch_size, opt.hidden_size)
        out = output_layer(feat_q)

        loss = torch.convertTensor(criterion(out, y))

        # ===================backward=====================
        optimizer.zero_grad()
        output_layer_optimizer.zero_grad()
        loss.backward()
        # torch.nn.utils.clip_grad_value_(model.parameters(), 1)
        # torch.nn.utils.clip_grad_value_(output_layer.parameters(), 1)
        global_step = epoch * n_batch + idx
        lr_this_step = opt.learning_rate * warmup_linear(
            global_step / (opt.epochs * n_batch), 0.1)
        # if lr_this_step is not None:
        #     optimizer.set_lr(lr_this_step)
        #     output_layer_optimizer.set_lr(lr_this_step)

        optimizer.step()
        output_layer_optimizer.step()

        preds = out.argmax(dim=1)
        f1 = f1_score(y.cpu().numpy(), preds.cpu().numpy(), average="micro")

        # ===================meters=====================
        f1_meter.update(f1, bsz)
        epoch_f1_meter.update(f1, bsz)
        loss_meter.update(loss.item(), bsz)
        epoch_loss_meter.update(loss.item(), bsz)
        graph_size.update(graph_q.number_of_nodes() / bsz, bsz)
        max_num_nodes = max(max_num_nodes, graph_q.number_of_nodes())
        max_num_edges = max(max_num_edges, graph_q.number_of_edges())

        batch_time.update(time.time() - end)
        end = time.time()

        # print info
        if (idx + 1) % opt.print_freq == 0:
            mem = psutil.virtual_memory()
            #  print(f'{idx:8} - {mem.percent:5} - {mem.free/1024**3:10.2f} - {mem.available/1024**3:10.2f} - {mem.used/1024**3:10.2f}')
            #  mem_used.append(mem.used/1024**3)
            print("Train: [{0}][{1}/{2}]\t"
                  "BT {batch_time.val:.3f} ({batch_time.avg:.3f})\t"
                  "DT {data_time.val:.3f} ({data_time.avg:.3f})\t"
                  "loss {loss.val:.3f} ({loss.avg:.3f})\t"
                  "f1 {f1.val:.3f} ({f1.avg:.3f})\t"
                  "GS {graph_size.val:.3f} ({graph_size.avg:.3f})\t"
                  "mem {mem:.3f}".format(
                      epoch,
                      idx + 1,
                      n_batch,
                      batch_time=batch_time,
                      data_time=data_time,
                      loss=loss_meter,
                      f1=f1_meter,
                      graph_size=graph_size,
                      mem=mem.used / 1024**3,
                  ))
            #  print(out[0].abs().max())

        # tensorboard logger
        if (idx + 1) % opt.tb_freq == 0:
            sw.add_scalar("ft_loss", loss_meter.avg, global_step)
            sw.add_scalar("ft_f1", f1_meter.avg, global_step)
            sw.add_scalar("graph_size", graph_size.avg, global_step)
            sw.add_scalar("lr", lr_this_step, global_step)
            sw.add_scalar("graph_size/max", max_num_nodes, global_step)
            sw.add_scalar("graph_size/max_edges", max_num_edges, global_step)
            #  sw.add_scalar(
            #      "learning_rate", optimizer.param_groups[0]["lr"], global_step
            #  )
            loss_meter.reset()
            f1_meter.reset()
            graph_size.reset()
            max_num_nodes, max_num_edges = 0, 0
    return epoch_loss_meter.avg, epoch_f1_meter.avg