Пример #1
0
def compute_conf_scores(path):
    logging.info("Computing confidence scores")
    job = load_job(path)
    raw  = job.results.raw_stats
    bins = job.results.bins
    
    unperm_counts = cumulative_hist(raw, bins)
    perm_counts   = job.results.bin_to_mean_perm_count
    bin_to_score  = confidence_scores(unperm_counts, perm_counts, np.shape(raw)[-1])
    feature_to_score = assign_scores_to_features(
        raw, bins, bin_to_score)

    with h5py.File(path, 'r+') as db:
        db.create_dataset("bin_to_unperm_count", data=unperm_counts)
        db.create_dataset("bin_to_score", data=bin_to_score)
        db.create_dataset("feature_to_score", data=feature_to_score)
Пример #2
0
def compute_conf_scores(path):
    logging.info("Computing confidence scores")
    job = load_job(path)
    raw = job.results.raw_stats
    bins = job.results.bins

    unperm_counts = cumulative_hist(raw, bins)
    perm_counts = job.results.bin_to_mean_perm_count
    bin_to_score = confidence_scores(unperm_counts, perm_counts,
                                     np.shape(raw)[-1])
    feature_to_score = assign_scores_to_features(raw, bins, bin_to_score)

    with h5py.File(path, 'r+') as db:
        db.create_dataset("bin_to_unperm_count", data=unperm_counts)
        db.create_dataset("bin_to_score", data=bin_to_score)
        db.create_dataset("feature_to_score", data=feature_to_score)
Пример #3
0
def score_dist_by_tuning_param(job_meta, job_db):

    plt.title('Features by confidence score')
    plt.xlabel('Confidence')
    plt.ylabel('Features')

    lines = []
    labels = []

    params = job_db.settings.tuning_params
    if 'tuning_param_idx' in request.args:
        params = [int(request.args.get('tuning_param_idx'))]

    for i, alpha in enumerate(params):
        bins = np.arange(0.5, 1.0, 0.01)
        hist = cumulative_hist(job_db.results.feature_to_score[i], bins)
        lines.append(plt.plot(bins[:-1], hist, label=str(alpha)))
        labels.append(str(alpha))
    plt.legend(loc='upper right')

    return figure_response()
Пример #4
0
def score_dist_by_tuning_param(job_meta, job_db):

    plt.title('Features by confidence score')
    plt.xlabel('Confidence')
    plt.ylabel('Features')

    lines = []
    labels = []

    params = job_db.settings.tuning_params
    if 'tuning_param_idx' in request.args:
        params = [ int(request.args.get('tuning_param_idx')) ]

    for i, alpha in enumerate(params):
        bins = np.arange(0.5, 1.0, 0.01)
        hist = cumulative_hist(job_db.results.feature_to_score[i], bins)
        lines.append(plt.plot(bins[:-1], hist, label=str(alpha)))
        labels.append(str(alpha))
    plt.legend(loc='upper right')

    return figure_response()