Пример #1
0
    def listen_for_results(self, output_h5_file, total_particles):
        logger.info("Waiting for %i particle results" % total_particles)

        particles = []
        retrieved = 0
        timeout = 200

        while retrieved < total_particles:
            try:
                # self.result is an iterator that can timeout on next()
                particle = self.result.next(timeout)
                retrieved += 1
                particles.append(particle)
            except StopIteration:
                assert retrieved >= total_particles
                break
            except:
                logger.exception("Particle has FAILED!!")
                continue

            # We multiply by 90 here to save 10% for the exporting
            logger.progress((round((float(retrieved) / total_particles) * 90., 1), "%s Particle(s) complete" % retrieved))

        logger.info(particles)
        results = ex.ResultsPyTable(output_h5_file)
        for p in particles:
            for x in range(len(p.locations)):
                results.write(p.timestep_index_dump(x))
        results.compute()
        results.close()

        return
Пример #2
0
    def start_tasks(self, **kwargs):

        try:
            logger.info('Adding %i particles as tasks' % self.total_particle_count())
            tasks = []

            for part in self.particles:
                forcer = BaseForcer(self.hydrodataset,
                                    particle=part,
                                    common_variables=self.common_variables,
                                    timevar=self.timevar,
                                    times=self.times,
                                    start_time=self.start,
                                    models=self._models,
                                    release_location_centroid=self.reference_location.point,
                                    usebathy=self._use_bathymetry,
                                    useshore=self._use_shoreline,
                                    usesurface=self._use_seasurface,
                                    reverse_distance=self.reverse_distance,
                                    bathy_path=self.bathy_path,
                                    shoreline_path=self.shoreline_path,
                                    shoreline_feature=self.shoreline_feature,
                                    time_method=self.time_method,
                                    shoreline_index_buffer=self.shoreline_index_buffer)
                tasks.append(forcer)

            logger.progress((5, 'Running model'))
            return self.pool.map_async(Runner(), tasks)

        except Exception:
            logger.exception("Something didn't start correctly!")
            raise
Пример #3
0
    def listen_for_results(self, output_h5_file, total_particles):
        logger.info("Waiting for %i particle results" % total_particles)

        particles = []
        retrieved = 0
        timeout = 200

        while retrieved < total_particles:
            try:
                # self.result is an iterator that can timeout on next()
                particle = self.result.next(timeout)
                retrieved += 1
                particles.append(particle)
            except StopIteration:
                assert retrieved >= total_particles
                break
            except:
                logger.exception("Particle has FAILED!!")
                continue

            # We multiply by 90 here to save 10% for the exporting
            logger.progress((round((float(retrieved) / total_particles) * 90.,
                                   1), "%s Particle(s) complete" % retrieved))

        logger.info(particles)
        results = ex.ResultsPyTable(output_h5_file)
        for p in particles:
            for x in range(len(p.locations)):
                results.write(p.timestep_index_dump(x))
        results.compute()
        results.close()

        return
Пример #4
0
    def start_tasks(self, **kwargs):
        try:
            logger.info('Starting CachingDataController')

            # Add data controller to the queue first so that it
            # can get the initial data and is not blocked
            data_controller = CachingDataController(self.hydrodataset, self.common_variables, self.n_run, self.get_data, self.write_lock, self.has_write_lock, self.read_lock, self.read_count,
                                                    self.time_chunk, self.horiz_chunk, self.times, self.start, self.point_get, self.reference_location, cache_path=self.cache_path)
            self.tasks.put(data_controller)
            # Create CachingDataController worker
            self.data_controller_process = Consumer(self.tasks, self.results, self.n_run, self.nproc_lock, self.active, self.get_data, name="CachingDataController")
            self.data_controller_process.start()

            logger.info('Adding %i particles as tasks' % self.total_particle_count())

            for part in self.particles:
                forcer = CachingForcer(self.cache_path,
                                       particle=part,
                                       common_variables=self.common_variables,
                                       timevar=self.timevar,
                                       times=self.times,
                                       start_time=self.start,
                                       models=self._models,
                                       release_location_centroid=self.reference_location.point,
                                       usebathy=self._use_bathymetry,
                                       useshore=self._use_shoreline,
                                       usesurface=self._use_seasurface,
                                       reverse_distance=self.reverse_distance,
                                       bathy_path=self.bathy_path,
                                       shoreline_path=self.shoreline_path,
                                       shoreline_feature=self.shoreline_feature,
                                       time_method=self.time_method,
                                       shoreline_index_buffer=self.shoreline_index_buffer,
                                       get_data=self.get_data,
                                       read_lock=self.read_lock,
                                       has_read_lock=self.has_read_lock,
                                       read_count=self.read_count,
                                       point_get=self.point_get,
                                       data_request_lock=self.data_request_lock,
                                       has_data_request_lock=self.has_data_request_lock
                                      )
                self.tasks.put(forcer)

            # Create workers for the particles.
            self.procs = [Consumer(self.tasks, self.results, self.n_run, self.nproc_lock, self.active, self.get_data, name="CachingForcer-%d" % i)
                          for i in range(self.nproc - 1) ]
            logger.progress((5, 'Running model'))
            for w in self.procs:
                w.start()
                logger.info('Started %s' % w.name)

            return True

        except Exception:
            logger.exception("Something didn't start correctly!")
            return False
Пример #5
0
    def start_tasks(self, **kwargs):
        logger.progress((5, 'Running model'))
        rc = redis.from_url(self.redis_url)
        if kwargs.get('task_queue_call'):
            for p in self.particles:
                try:
                    kwargs.get('task_queue_call')(func=particle_runner,
                                                  args=(
                                                      p,
                                                      self,
                                                  ))
                except Exception:
                    logger.exception(traceback.format_exc())
                    rc.publish(self.redis_results_channel,
                               json.dumps({
                                   "status": "FAILED",
                                   "uid": p.uid
                               }))
            return True
        else:
            tasks = []
            for p in self.particles:
                f = BaseForcer(
                    self.hydrodataset,
                    particle=p,
                    common_variables=self.common_variables,
                    times=self.times,
                    start_time=self.start,
                    models=self._models,
                    release_location_centroid=self.reference_location.point,
                    usebathy=self._use_bathymetry,
                    useshore=self._use_shoreline,
                    usesurface=self._use_seasurface,
                    reverse_distance=self.reverse_distance,
                    bathy_path=self.bathy_path,
                    shoreline_path=self.shoreline_path,
                    shoreline_feature=self.shoreline_feature,
                    time_method=self.time_method,
                    redis_url=self.redis_url,
                    redis_results_channel=self.redis_results_channel,
                    shoreline_index_buffer=self.shoreline_index_buffer)
                tasks.append(f)
            self.pool = multiprocessing.Pool()
            return self.pool.imap(Runner(), tasks)

        return False
Пример #6
0
    def listen_for_results(self):
        logger.info("Waiting for %i particle results" % len(self.particles))
        logger.progress((5, "Running model"))

        particles = []
        retrieved = 0
        timeout = 200

        while retrieved < len(self.particles):
            try:
                # @TODO: better mechanism than switching on type
                if isinstance(self.pool, multiprocessing.pool.Pool):
                    # self.result is an iterator that can timeout on next()
                    particle = self.result.next(timeout)
                    retrieved += 1
                    particles.append(particle)
                else:
                    # IPython parallel View
                    # self.result is an AsyncMapResult
                    from IPython.parallel import TimeoutError
                    try:
                        new_particles = self.result.get(timeout=1)
                    except TimeoutError:
                        pass    # this is fine, get incremental progress below
                    else:
                        particles = new_particles

                    # progress is absolute, not incremental
                    retrieved = self.result.progress

            except StopIteration:
                assert retrieved >= len(self.particles)
                break
            except:
                logger.exception("Particle has FAILED!!")
                #logger.warn("Particle %s has FAILED!!" % particle.uid)
                continue

            # We multiply by 95 here to save 5% for the exporting
            logger.progress((round((float(retrieved) / self.number_of_tasks) * 90., 1), "%s Particle(s) complete" % retrieved))

        return particles
Пример #7
0
    def run(self, **kwargs):

        logger.progress((4, "Starting tasks"))
        self.result = self.start_tasks(**kwargs)
        if self.result is None:
            raise BaseDataControllerError("Not all tasks started! Exiting.")

        # Store results in hdf5 file for processing later
        output_h5_file = None
        if kwargs.get('output_path') is not None:
            output_h5_file = os.path.join(kwargs.get('output_path'),
                                          'results.h5')

        if self.thread_result_listener is True:
            rl = threading.Thread(name="ResultListener",
                                  target=self.listen_for_results,
                                  args=(output_h5_file,
                                        self.total_particle_count()))
            rl.daemon = True
            rl.start()
            rl.join()  # This blocks until the tasks are all done.
        else:
            self.listen_for_results(output_h5_file, self.total_particle_count(
            ))  # This blocks until the tasks are all done.

        logger.info('Tasks are all finished... Cleaning up!!')
        self.cleanup()

        # If output_formats and path specified,
        # output particle run data to disk when completed
        if "output_formats" in kwargs:

            logger.progress((96, "Exporting results"))

            # Make sure output_path is also included
            if kwargs.get("output_path", None) is not None:
                formats = kwargs.get("output_formats")
                output_path = kwargs.get("output_path")
                if isinstance(formats, list):
                    for fmt in formats:
                        logger.info("Exporting to: %s" % fmt)
                        try:
                            # Calls the export function
                            fmt.export(output_path, output_h5_file)
                        except:
                            logger.exception("Failed to export to: %s" % fmt)
                else:
                    logger.warn(
                        'The output_formats parameter should be a list, not saving any output!'
                    )
            else:
                logger.warn('No output path defined, not saving any output!')
        else:
            logger.warn(
                'No output_formats parameter was defined, not saving any output!'
            )

        logger.progress((97, "Model Run Complete"))

        return
Пример #8
0
    def listen_for_results(self, output_h5_file, total_particles):
        logger.info("Waiting for %i particle results" % total_particles)

        particles = []
        retrieved = 0

        while retrieved < total_particles:
            try:
                # IPython parallel View
                # self.result is an AsyncMapResult
                from IPython.parallel import TimeoutError
                try:
                    new_particles = self.result.get(timeout=1)
                except TimeoutError:
                    pass    # this is fine, get incremental progress below
                else:
                    particles = new_particles

                # progress is absolute, not incremental
                retrieved = self.result.progress
            except StopIteration:
                assert retrieved >= total_particles
                break
            except:
                logger.exception("Particle has FAILED!!")
                continue

            # We multiply by 90 here to save 10% for the exporting
            logger.progress((round((float(retrieved) / total_particles) * 90., 1), "%s Particle(s) complete" % retrieved))

        results = ex.ResultsPyTable(output_h5_file)
        for p in particles:
            for x in range(len(p.locations)):
                results.write(p.timestep_index_dump(x))
        results.compute()
        results.close()

        return
Пример #9
0
    def run(self, hydrodataset, **kwargs):

        self.hydrodataset = hydrodataset

        self.setup_run(**kwargs)

        logger.progress((4, "Starting tasks"))
        self.result = self.start_tasks()
        if self.result is None:
            raise BaseDataControllerError("Not all tasks started! Exiting.")

        # This blocks until the tasks are all done.
        self.particles = self.listen_for_results()

        logger.info('Consumers are all finished!')

        logger.info('Cleaning up')
        self.cleanup()

        if len(self.particles) > 0:
            # If output_formats and path specified,
            # output particle run data to disk when completed
            if "output_formats" in kwargs:

                logger.progress((96, "Exporting results"))

                # Make sure output_path is also included
                if kwargs.get("output_path", None) is not None:
                    formats = kwargs.get("output_formats")
                    output_path = kwargs.get("output_path")
                    if isinstance(formats, list):
                        for format in formats:
                            logger.info("Exporting to: %s" % format)
                            try:
                                self.export(output_path, format=format)
                            except:
                                logger.exception("Failed to export to: %s" % format)
                    else:
                        logger.warn('The output_formats parameter should be a list, not saving any output!')
                else:
                    logger.warn('No output path defined, not saving any output!')
            else:
                logger.warn('No output format defined, not saving any output!')
        else:
            logger.warn("Model didn't actually do anything, check the log.")
            if self.error_code == -2:
                raise BaseDataControllerError("Error in the BaseDataController")
            else:
                raise ModelError("Error in the model")

        logger.progress((97, "Model Run Complete"))
        return self.particles
Пример #10
0
    def run(self, **kwargs):

        logger.progress((4, "Starting tasks"))
        self.result = self.start_tasks(**kwargs)
        if self.result is None:
            raise BaseDataControllerError("Not all tasks started! Exiting.")

        # Store results in hdf5 file for processing later
        output_h5_file = None
        if kwargs.get('output_path') is not None:
            output_h5_file = os.path.join(kwargs.get('output_path'), 'results.h5')

        if self.thread_result_listener is True:
            rl = threading.Thread(name="ResultListener", target=self.listen_for_results, args=(output_h5_file, self.total_particle_count()))
            rl.daemon = True
            rl.start()
            rl.join()  # This blocks until the tasks are all done.
        else:
            self.listen_for_results(output_h5_file, self.total_particle_count())    # This blocks until the tasks are all done.

        logger.info('Tasks are all finished... Cleaning up!!')
        self.cleanup()

        # If output_formats and path specified,
        # output particle run data to disk when completed
        if "output_formats" in kwargs:

            logger.progress((96, "Exporting results"))

            # Make sure output_path is also included
            if kwargs.get("output_path", None) is not None:
                formats = kwargs.get("output_formats")
                output_path = kwargs.get("output_path")
                if isinstance(formats, list):
                    for fmt in formats:
                        logger.info("Exporting to: %s" % fmt)
                        try:
                            # Calls the export function
                            fmt.export(output_path, output_h5_file)
                        except:
                            logger.exception("Failed to export to: %s" % fmt)
                else:
                    logger.warn('The output_formats parameter should be a list, not saving any output!')
            else:
                logger.warn('No output path defined, not saving any output!')
        else:
            logger.warn('No output_formats parameter was defined, not saving any output!')

        logger.progress((97, "Model Run Complete"))

        return
Пример #11
0
def run(run_id):

    # Sleep to give the Run object enough time to save
    time.sleep(10)

    with app.app_context():
        from paegan.logger import logger

        job = get_current_job()

        output_path = os.path.join(current_app.config['OUTPUT_PATH'], run_id)
        shutil.rmtree(output_path, ignore_errors=True)
        os.makedirs(output_path)

        cache_path = os.path.join(current_app.config['CACHE_PATH'], run_id)
        shutil.rmtree(cache_path, ignore_errors=True)
        os.makedirs(cache_path)

        temp_animation_path = os.path.join(current_app.config['OUTPUT_PATH'], "temp_images_" + run_id)
        shutil.rmtree(temp_animation_path, ignore_errors=True)
        os.makedirs(temp_animation_path)

        # Set up Logger
        queue = multiprocessing.Queue(-1)

        f, log_file = tempfile.mkstemp(dir=cache_path, prefix=run_id, suffix=".log")
        os.close(f)

        # Close any existing handlers
        (hand.close() for hand in logger.handlers)
        # Remove any existing handlers
        logger.handlers = []
        logger.setLevel(logging.PROGRESS)
        handler = MultiProcessingLogHandler(log_file, queue)
        handler.setLevel(logging.PROGRESS)
        formatter = logging.Formatter('[%(asctime)s] - %(levelname)s - %(name)s - %(processName)s - %(message)s')
        handler.setFormatter(formatter)
        logger.addHandler(handler)

        # Progress stuff.  Hokey!
        progress_deque = collections.deque(maxlen=1)
        progress_handler = ProgressHandler(progress_deque)
        progress_handler.setLevel(logging.PROGRESS)
        logger.addHandler(progress_handler)

        e = threading.Event()

        def save_progress():
            while e.wait(5) is not True:
                try:
                    record = progress_deque.pop()
                    if record == StopIteration:
                        break

                    job.meta["updated"] = record[0]
                    if record is not None and record[1] >= 0:
                        job.meta["progress"] = record[1]
                    if isinstance(record[2], unicode) or isinstance(record[2], str):
                        job.meta["message"] = record[2]

                    job.save()
                except IndexError:
                    pass
                except Exception:
                    raise
            return

        t = threading.Thread(name="ProgressUpdater", target=save_progress)
        t.daemon = True
        t.start()

        model = None

        try:

            logger.progress((0, "Configuring model"))

            run = db.Run.find_one( { '_id' : ObjectId(run_id) } )
            if run is None:
                return "Failed to locate run %s. May have been deleted while task was in the queue?" % run_id

            geometry       = loads(run['geometry'])
            start_depth    = run['release_depth']
            num_particles  = run['particles']
            time_step      = run['timestep']
            num_steps      = int(math.ceil((run['duration'] * 24 * 60 * 60) / time_step))
            start_time     = run['start'].replace(tzinfo = pytz.utc)
            shoreline_path = run['shoreline_path'] or app.config.get("SHORE_PATH")
            shoreline_feat = run['shoreline_feature']

            # Set up output directory/bucket for run
            output_formats = ['Shapefile', 'NetCDF', 'Trackline']

            # Setup Models
            models = []
            if run['cached_behavior'] is not None and run['cached_behavior'].get('results', None) is not None:
                behavior_data = run['cached_behavior']['results'][0]
                l = LarvaBehavior(data=behavior_data)
                models.append(l)
            models.append(Transport(horizDisp=run['horiz_dispersion'], vertDisp=run['vert_dispersion']))

            # Setup ModelController
            model = ModelController(geometry=geometry, depth=start_depth, start=start_time, step=time_step, nstep=num_steps, npart=num_particles, models=models, use_bathymetry=True, use_shoreline=True,
                                    time_chunk=run['time_chunk'], horiz_chunk=run['horiz_chunk'], time_method=run['time_method'], shoreline_path=shoreline_path, shoreline_feature=shoreline_feat, reverse_distance=1500)

            # Run the model
            cache_file = os.path.join(cache_path, run_id + ".nc.cache")
            bathy_file = current_app.config['BATHY_PATH']

            model.run(run['hydro_path'], output_path=output_path, bathy=bathy_file, output_formats=output_formats, cache=cache_file, remove_cache=False, caching=run['caching'])

            # Skip creating movie output_path
            """
            from paegan.viz.trajectory import CFTrajectory

            logger.info("Creating animation...")
            for filename in os.listdir(output_path):
                if os.path.splitext(filename)[1][1:] == "nc":
                    # Found netCDF file
                    netcdf_file = os.path.join(output_path,filename)
                    traj = CFTrajectory(netcdf_file)
                    success = traj.plot_animate(os.path.join(output_path,'animation.avi'), temp_folder=temp_animation_path, bathy=app.config['BATHY_PATH'])
                    if not success:
                        logger.info("Could not create animation")
                    else:
                        logger.info("Animation saved")
            """
            job.meta["outcome"] = "success"
            job.save()
            return "Successfully ran %s" % run_id

        except Exception as exception:
            logger.warn("Run FAILED, cleaning up and uploading log.")
            logger.warn(exception.message)
            job.meta["outcome"] = "failed"
            job.save()
            raise

        finally:

            logger.progress((99, "Processing output files"))
            # Close the handler so we can upload the log file without a file lock
            (hand.close() for hand in logger.handlers)
            queue.put(StopIteration)
            # Break out of the progress loop
            e.set()
            t.join()

            # Move logfile to output directory
            shutil.move(log_file, os.path.join(output_path, 'model.log'))

            # Move cachefile to output directory if we made one
            if run['caching']:
                shutil.move(cache_file, output_path)

            output_files = []
            for filename in os.listdir(output_path):
                outfile = os.path.join(output_path, filename)
                output_files.append(outfile)

            result_files = []
            base_access_url = current_app.config.get('NON_S3_OUTPUT_URL', None)
            # Handle results and cleanup
            if current_app.config['USE_S3'] is True:
                base_access_url = urljoin("http://%s.s3.amazonaws.com/output/" % current_app.config['S3_BUCKET'], run_id)
                # Upload results to S3 and remove the local copies
                conn = S3Connection()
                bucket = conn.get_bucket(current_app.config['S3_BUCKET'])

                for outfile in output_files:
                    # Don't upload the cache file
                    if os.path.basename(outfile) == os.path.basename(cache_file):
                        continue

                    # Upload the outfile with the same as the run name
                    _, ext = os.path.splitext(outfile)
                    new_filename = slugify(unicode(run['name'])) + ext

                    k = Key(bucket)
                    k.key = "output/%s/%s" % (run_id, new_filename)
                    k.set_contents_from_filename(outfile)
                    k.set_acl('public-read')
                    result_files.append(base_access_url + "/" + new_filename)
                    os.remove(outfile)

                shutil.rmtree(output_path, ignore_errors=True)

            else:
                for outfile in output_files:
                    result_files.append(urljoin(base_access_url, run_id) + "/" + os.path.basename(outfile))

            shutil.rmtree(temp_animation_path, ignore_errors=True)

            # Set output fields
            run.output = result_files
            run.ended = datetime.utcnow()
            run.compute()
            run.save()

            # Cleanup
            logger.removeHandler(handler)
            del formatter
            del handler
            del logger
            del model
            queue.close()

            job.meta["message"] = "Complete"
            job.save()
    def run(self, hydrodataset, **kwargs):

        # Add ModelController description to logfile
        logger.info(self)

        # Add the model descriptions to logfile
        for m in self._models:
            logger.info(m)

        # Calculate the model timesteps
        # We need times = len(self._nstep) + 1 since data is stored one timestep
        # after a particle is forced with the final timestep's data.
        times = range(0, (self._step * self._nstep) + 1, self._step)
        # Calculate a datetime object for each model timestep
        # This method is duplicated in DataController and ForceParticle
        # using the 'times' variables above.  Will be useful in those other
        # locations for particles released at different times
        # i.e. released over a few days
        modelTimestep, self.datetimes = AsaTransport.get_time_objects_from_model_timesteps(
            times, start=self.start)

        time_chunk = self._time_chunk
        horiz_chunk = self._horiz_chunk
        low_memory = kwargs.get("low_memory", False)

        # Should we remove the cache file at the end of the run?
        remove_cache = kwargs.get("remove_cache", True)

        self.bathy_path = kwargs.get("bathy", None)

        self.cache_path = kwargs.get("cache", None)
        if self.cache_path is None:
            # Generate temp filename for dataset cache
            default_cache_dir = os.path.join(os.path.dirname(__file__),
                                             "_cache")
            temp_name = AsaRandom.filename(prefix=str(
                datetime.now().microsecond),
                                           suffix=".nc")
            self.cache_path = os.path.join(default_cache_dir, temp_name)

        logger.progress((1, "Setting up particle start locations"))
        point_locations = []
        if isinstance(self.geometry, Point):
            point_locations = [self.reference_location] * self._npart
        elif isinstance(self.geometry, Polygon) or isinstance(
                self.geometry, MultiPolygon):
            point_locations = [
                Location4D(latitude=loc.y,
                           longitude=loc.x,
                           depth=self._depth,
                           time=self.start)
                for loc in AsaTransport.fill_polygon_with_points(
                    goal=self._npart, polygon=self.geometry)
            ]

        # Initialize the particles
        logger.progress((2, "Initializing particles"))
        for x in xrange(0, self._npart):
            p = LarvaParticle(id=x)
            p.location = point_locations[x]
            # We don't need to fill the location gaps here for environment variables
            # because the first data collected actually relates to this original
            # position.
            # We do need to fill in fields such as settled, halted, etc.
            p.fill_status_gap()
            # Set the inital note
            p.note = p.outputstring()
            p.notes.append(p.note)
            self.particles.append(p)

        # This is where it makes sense to implement the multiprocessing
        # looping for particles and models. Can handle each particle in
        # parallel probably.
        #
        # Get the number of cores (may take some tuning) and create that
        # many workers then pass particles into the queue for the workers
        mgr = multiprocessing.Manager()
        nproc = multiprocessing.cpu_count() - 1
        if nproc <= 0:
            raise ValueError(
                "Model does not run using less than two CPU cores")

        # Each particle is a task, plus the DataController
        number_of_tasks = len(self.particles) + 1

        # We need a process for each particle and one for the data controller
        nproc = min(number_of_tasks, nproc)

        # When a particle requests data
        data_request_lock = mgr.Lock()
        # PID of process with lock
        has_data_request_lock = mgr.Value('int', -1)

        nproc_lock = mgr.Lock()

        # Create the task queue for all of the particles and the DataController
        tasks = multiprocessing.JoinableQueue(number_of_tasks)
        # Create the result queue for all of the particles and the DataController
        results = mgr.Queue(number_of_tasks)

        # Create the shared state objects
        get_data = mgr.Value('bool', True)
        # Number of tasks
        n_run = mgr.Value('int', number_of_tasks)
        updating = mgr.Value('bool', False)

        # When something is reading from cache file
        read_lock = mgr.Lock()
        # list of PIDs that are reading
        has_read_lock = mgr.list()
        read_count = mgr.Value('int', 0)

        # When something is writing to the cache file
        write_lock = mgr.Lock()
        # PID of process with lock
        has_write_lock = mgr.Value('int', -1)

        point_get = mgr.Value('list', [0, 0, 0])
        active = mgr.Value('bool', True)

        logger.progress((3, "Initializing and caching hydro model's grid"))
        try:
            ds = CommonDataset.open(hydrodataset)
            # Query the dataset for common variable names
            # and the time variable.
            logger.debug("Retrieving variable information from dataset")
            common_variables = self.get_common_variables_from_dataset(ds)

            logger.debug("Pickling time variable to disk for particles")
            timevar = ds.gettimevar(common_variables.get("u"))
            f, timevar_pickle_path = tempfile.mkstemp()
            os.close(f)
            f = open(timevar_pickle_path, "wb")
            pickle.dump(timevar, f)
            f.close()
            ds.closenc()
        except:
            logger.warn("Failed to access remote dataset %s" % hydrodataset)
            raise DataControllerError("Inaccessible DAP endpoint: %s" %
                                      hydrodataset)

        # Add data controller to the queue first so that it
        # can get the initial data and is not blocked

        logger.debug('Starting DataController')
        logger.progress((4, "Starting processes"))
        data_controller = parallel.DataController(hydrodataset,
                                                  common_variables,
                                                  n_run,
                                                  get_data,
                                                  write_lock,
                                                  has_write_lock,
                                                  read_lock,
                                                  read_count,
                                                  time_chunk,
                                                  horiz_chunk,
                                                  times,
                                                  self.start,
                                                  point_get,
                                                  self.reference_location,
                                                  low_memory=low_memory,
                                                  cache=self.cache_path)
        tasks.put(data_controller)
        # Create DataController worker
        data_controller_process = parallel.Consumer(tasks,
                                                    results,
                                                    n_run,
                                                    nproc_lock,
                                                    active,
                                                    get_data,
                                                    name="DataController")
        data_controller_process.start()

        logger.debug('Adding %i particles as tasks' % len(self.particles))
        for part in self.particles:
            forcing = parallel.ForceParticle(
                part,
                hydrodataset,
                common_variables,
                timevar_pickle_path,
                times,
                self.start,
                self._models,
                self.reference_location.point,
                self._use_bathymetry,
                self._use_shoreline,
                self._use_seasurface,
                get_data,
                n_run,
                read_lock,
                has_read_lock,
                read_count,
                point_get,
                data_request_lock,
                has_data_request_lock,
                reverse_distance=self.reverse_distance,
                bathy=self.bathy_path,
                shoreline_path=self.shoreline_path,
                cache=self.cache_path,
                time_method=self.time_method)
            tasks.put(forcing)

        # Create workers for the particles.
        procs = [
            parallel.Consumer(tasks,
                              results,
                              n_run,
                              nproc_lock,
                              active,
                              get_data,
                              name="ForceParticle-%d" % i)
            for i in xrange(nproc - 1)
        ]
        for w in procs:
            w.start()
            logger.debug('Started %s' % w.name)

        # Get results back from queue, test for failed particles
        return_particles = []
        retrieved = 0.
        error_code = 0

        logger.info("Waiting for %i particle results" % len(self.particles))
        logger.progress((5, "Running model"))
        while retrieved < number_of_tasks:
            try:
                # Returns a tuple of code, result
                code, tempres = results.get(timeout=240)
            except Queue.Empty:
                # Poll the active processes to make sure they are all alive and then continue with loop
                if not data_controller_process.is_alive(
                ) and data_controller_process.exitcode != 0:
                    # Data controller is zombied, kill off other processes.
                    get_data.value == False
                    results.put((-2, "DataController"))

                new_procs = []
                old_procs = []
                for p in procs:
                    if not p.is_alive() and p.exitcode != 0:
                        # Do what the Consumer would do if something finished.
                        # Add something to results queue
                        results.put((-3, "ZombieParticle"))
                        # Decrement nproc (DataController exits when this is 0)
                        with nproc_lock:
                            n_run.value = n_run.value - 1

                        # Remove task from queue (so they can be joined later on)
                        tasks.task_done()

                        # Start a new Consumer.  It will exit if there are no tasks available.
                        np = parallel.Consumer(tasks,
                                               results,
                                               n_run,
                                               nproc_lock,
                                               active,
                                               get_data,
                                               name=p.name)
                        new_procs.append(np)
                        old_procs.append(p)

                        # Release any locks the PID had
                        if p.pid in has_read_lock:
                            with read_lock:
                                read_count.value -= 1
                                has_read_lock.remove(p.pid)

                        if has_data_request_lock.value == p.pid:
                            has_data_request_lock.value = -1
                            try:
                                data_request_lock.release()
                            except:
                                pass

                        if has_write_lock.value == p.pid:
                            has_write_lock.value = -1
                            try:
                                write_lock.release()
                            except:
                                pass

                for p in old_procs:
                    try:
                        procs.remove(p)
                    except ValueError:
                        logger.warn(
                            "Did not find %s in the list of processes.  Continuing on."
                            % p.name)

                for p in new_procs:
                    procs.append(p)
                    logger.warn(
                        "Started a new consumer (%s) to replace a zombie consumer"
                        % p.name)
                    p.start()

            else:
                # We got one.
                retrieved += 1
                if code == None:
                    logger.warn("Got an unrecognized response from a task.")
                elif code == -1:
                    logger.warn("Particle %s has FAILED!!" % tempres.uid)
                elif code == -2:
                    error_code = code
                    logger.warn(
                        "DataController has FAILED!!  Removing cache file so the particles fail."
                    )
                    try:
                        os.remove(self.cache_path)
                    except OSError:
                        logger.debug(
                            "Could not remove cache file, it probably never existed"
                        )
                        pass
                elif code == -3:
                    error_code = code
                    logger.info(
                        "A zombie process was caught and task was removed from queue"
                    )
                elif isinstance(tempres, Particle):
                    logger.info("Particle %d finished" % tempres.uid)
                    return_particles.append(tempres)
                    # We mulitply by 95 here to save 5% for the exporting
                    logger.progress(
                        (round((retrieved / number_of_tasks) * 90.,
                               1), "Particle %d finished" % tempres.uid))
                elif tempres == "DataController":
                    logger.info("DataController finished")
                    logger.progress((round((retrieved / number_of_tasks) * 90.,
                                           1), "DataController finished"))
                else:
                    logger.info("Got a strange result on results queue")
                    logger.info(str(tempres))

                logger.info("Retrieved %i/%i results" %
                            (int(retrieved), number_of_tasks))

        if len(return_particles) != len(self.particles):
            logger.warn(
                "Some particles failed and are not included in the output")

        # The results queue should be empty at this point
        assert results.empty() is True

        # Should be good to join on the tasks now that the queue is empty
        logger.info("Joining the task queue")
        tasks.join()

        # Join all processes
        logger.info("Joining the processes")
        for w in procs + [data_controller_process]:
            # Wait 10 seconds
            w.join(10.)
            if w.is_alive():
                # Process is hanging, kill it.
                logger.info(
                    "Terminating %s forcefully.  This should have exited itself."
                    % w.name)
                w.terminate()

        logger.info('Workers complete')

        self.particles = return_particles

        # Remove Manager so it shuts down
        del mgr

        # Remove pickled timevar
        os.remove(timevar_pickle_path)

        # Remove the cache file
        if remove_cache is True:
            try:
                os.remove(self.cache_path)
            except OSError:
                logger.debug(
                    "Could not remove cache file, it probably never existed")

        logger.progress((96, "Exporting results"))

        if len(self.particles) > 0:
            # If output_formats and path specified,
            # output particle run data to disk when completed
            if "output_formats" in kwargs:
                # Make sure output_path is also included
                if kwargs.get("output_path", None) != None:
                    formats = kwargs.get("output_formats")
                    output_path = kwargs.get("output_path")
                    if isinstance(formats, list):
                        for format in formats:
                            logger.info("Exporting to: %s" % format)
                            try:
                                self.export(output_path, format=format)
                            except:
                                logger.error("Failed to export to: %s" %
                                             format)
                    else:
                        logger.warn(
                            'The output_formats parameter should be a list, not saving any output!'
                        )
                else:
                    logger.warn(
                        'No output path defined, not saving any output!')
            else:
                logger.warn('No output format defined, not saving any output!')
        else:
            logger.warn("Model didn't actually do anything, check the log.")
            if error_code == -2:
                raise DataControllerError("Error in the DataController")
            else:
                raise ModelError("Error in the model")

        logger.progress((99, "Model Run Complete"))
        return
Пример #13
0
    def listen_for_results(self):
        try:
            # Get results back from queue, test for failed particles
            return_particles = []
            retrieved = 0.
            self.error_code = 0

            logger.info("Waiting for %i particle results" % len(self.particles))
            logger.progress((5, "Running model"))
            while retrieved < self.number_of_tasks:
                try:
                    # Returns a tuple of code, result
                    code, tempres = self.results.get(timeout=240)
                except Queue.Empty:
                    # Poll the active processes to make sure they are all alive and then continue with loop
                    if not self.data_controller_process.is_alive() and self.data_controller_process.exitcode != 0:
                        # Data controller is zombied, kill off other processes.
                        self.get_data.value is False
                        self.results.put((-2, "CachingDataController"))

                    new_procs = []
                    old_procs = []
                    for p in self.procs:
                        if not p.is_alive() and p.exitcode != 0:
                            # Do what the Consumer would do if something finished.
                            # Add something to results queue
                            self.results.put((-3, "ZombieParticle"))
                            # Decrement nproc (CachingDataController exits when this is 0)
                            with self.nproc_lock:
                                self.n_run.value = self.n_run.value - 1

                            # Remove task from queue (so they can be joined later on)
                            self.tasks.task_done()

                            # Start a new Consumer.  It will exit if there are no tasks available.
                            np = Consumer(self.tasks, self.results, self.n_run, self.nproc_lock, self.active, self.get_data, name=p.name)
                            new_procs.append(np)
                            old_procs.append(p)

                            # Release any locks the PID had
                            if p.pid in self.has_read_lock:
                                with self.read_lock:
                                    self.read_count.value -= 1
                                    self.has_read_lock.remove(p.pid)

                            if self.has_data_request_lock.value == p.pid:
                                self.has_data_request_lock.value = -1
                                try:
                                    self.data_request_lock.release()
                                except:
                                    pass

                            if self.has_write_lock.value == p.pid:
                                self.has_write_lock.value = -1
                                try:
                                    self.write_lock.release()
                                except:
                                    pass

                    for p in old_procs:
                        try:
                            self.procs.remove(p)
                        except ValueError:
                            logger.warn("Did not find %s in the list of processes.  Continuing on." % p.name)

                    for p in new_procs:
                        self.procs.append(p)
                        logger.warn("Started a new consumer (%s) to replace a zombie consumer" % p.name)
                        p.start()

                else:
                    # We got one.
                    retrieved += 1
                    if code is None:
                        logger.warn("Got an unrecognized response from a task.")
                    elif code == -1:
                        logger.warn("Particle %s has FAILED!!" % tempres.uid)
                    elif code == -2:
                        self.error_code = code
                        logger.warn("CachingDataController has FAILED!!  Removing cache file so the particles fail.")
                        try:
                            os.remove(self.cache_path)
                        except OSError:
                            logger.debug("Could not remove cache file, it probably never existed")
                            pass
                    elif code == -3:
                        self.error_code = code
                        logger.info("A zombie process was caught and task was removed from queue")
                    elif isinstance(tempres, Particle):
                        logger.info("Particle %d finished" % tempres.uid)
                        return_particles.append(tempres)
                        # We mulitply by 95 here to save 5% for the exporting
                        logger.progress((round((retrieved / self.number_of_tasks) * 90., 1), "Particle %d finished" % tempres.uid))
                    elif tempres == "CachingDataController":
                        logger.info("CachingDataController finished")
                        logger.progress((round((retrieved / self.number_of_tasks) * 90., 1), "CachingDataController finished"))
                    else:
                        logger.info("Got a strange result on results queue")
                        logger.info(str(tempres))

                    logger.info("Retrieved %i/%i results" % (int(retrieved), self.number_of_tasks))

            if len(return_particles) != len(self.particles):
                logger.warn("Some particles failed and are not included in the output")

            # The results queue should be empty at this point
            assert self.results.empty() is True

            # Should be good to join on the tasks now that the queue is empty
            logger.info("Joining the task queue")
            self.tasks.join()

            self.particles = return_particles

        finally:
            # Join all processes
            logger.info("Joining the processes")
            for w in self.procs + [self.data_controller_process]:
                    # Wait 20 seconds
                    w.join(20.)
                    if w.is_alive():
                        # Process is hanging, kill it.
                        logger.info("Terminating %s forcefully.  This should have exited itself." % w.name)
                        w.terminate()
Пример #14
0
    def setup_run(self, **kwargs):

        logger.setLevel(logging.PROGRESS)

        self.redis_url             = None
        self.redis_log_channel     = None
        self.redis_results_channel = None
        if "redis" in kwargs.get("output_formats", []):
            from paegan.logger.redis_handler import RedisHandler
            self.redis_url             = kwargs.get("redis_url")
            self.redis_log_channel     = kwargs.get("redis_log_channel")
            self.redis_results_channel = kwargs.get("redis_results_channel")
            rhandler = RedisHandler(self.redis_log_channel, self.redis_url)
            rhandler.setLevel(logging.PROGRESS)
            logger.addHandler(rhandler)

        # Relax.
        time.sleep(0.5)

        # Add ModelController description to logfile
        logger.info(unicode(self))

        # Add the model descriptions to logfile
        for m in self._models:
            logger.info(unicode(m))

        # Calculate the model timesteps
        # We need times = len(self._nstep) + 1 since data is stored one timestep
        # after a particle is forced with the final timestep's data.
        self.times = range(0, (self._step*self._nstep)+1, self._step)
        # Calculate a datetime object for each model timestep
        # This method is duplicated in CachingDataController and CachingForcer
        # using the 'times' variables above.  Will be useful in those other
        # locations for particles released at different times
        # i.e. released over a few days
        self.modelTimestep, self.datetimes = AsaTransport.get_time_objects_from_model_timesteps(self.times, start=self.start)

        logger.progress((1, "Setting up particle start locations"))
        point_locations = []
        if isinstance(self.geometry, Point):
            point_locations = [self.reference_location] * self._npart
        elif isinstance(self.geometry, Polygon) or isinstance(self.geometry, MultiPolygon):
            point_locations = [Location4D(latitude=loc.y, longitude=loc.x, depth=self._depth, time=self.start) for loc in AsaTransport.fill_polygon_with_points(goal=self._npart, polygon=self.geometry)]

        # Initialize the particles
        logger.progress((2, "Initializing particles"))
        for x in xrange(0, self._npart):
            p = LarvaParticle(id=x)
            p.location = point_locations[x]
            # We don't need to fill the location gaps here for environment variables
            # because the first data collected actually relates to this original
            # position.
            # We do need to fill in fields such as settled, halted, etc.
            p.fill_status_gap()
            # Set the inital note
            p.note = p.outputstring()
            p.notes.append(p.note)
            self.particles.append(p)

        if kwargs.get("manager", True):
            # Get the number of cores (may take some tuning) and create that
            # many workers then pass particles into the queue for the workers
            self.mgr = multiprocessing.Manager()

            # This tracks if the system is 'alive'.  Most looping whiles will check this
            # and break out if it is False.  This is True until something goes very wrong.
            self.active = self.mgr.Value('bool', True)

            # Each particle is a task, plus the CachingDataController
            self.number_of_tasks = self.get_number_of_tasks()

            # Either spin up the number of cores, or the number of tasks
            self.nproc = min(multiprocessing.cpu_count() - 1, self.number_of_tasks)

            # Number of tasks that we need to run.  This is decremented everytime something exits.
            self.n_run = self.mgr.Value('int', self.number_of_tasks)
            # The lock that controls access to the 'n_run' variable
            self.nproc_lock = self.mgr.Lock()

            # Create the task queue for all of the particles and the CachingDataController
            self.tasks = multiprocessing.JoinableQueue(self.number_of_tasks)
            # Create the result queue for all of the particles and the CachingDataController
            self.results = self.mgr.Queue(self.number_of_tasks)

        logger.progress((3, "Initializing and caching hydro model's grid"))
        try:
            ds = CommonDataset.open(self.hydrodataset)
        except Exception:
            logger.exception("Failed to access dataset %s" % self.hydrodataset)
            raise BaseDataControllerError("Inaccessible Dataset: %s" % self.hydrodataset)
        # Query the dataset for common variable names
        # and the time variable.
        logger.debug("Retrieving variable information from dataset")
        self.common_variables = self.get_common_variables_from_dataset(ds)

        self.timevar = None
        try:
            assert self.common_variables.get("u") in ds._current_variables
            assert self.common_variables.get("v") in ds._current_variables
            assert self.common_variables.get("x") in ds._current_variables
            assert self.common_variables.get("y") in ds._current_variables

            self.timevar = ds.gettimevar(self.common_variables.get("u"))
        except AssertionError:
            logger.exception("Could not locate variables needed to run model: %s" % unicode(self.common_variables))
            raise BaseDataControllerError("A required data variable was not found in %s" % self.hydrodataset)

        model_start = self.timevar.get_dates()[0]
        model_end   = self.timevar.get_dates()[-1]

        try:
            assert self.start > model_start
            assert self.start < model_end
        except AssertionError:
            raise BaseDataControllerError("Start time for model (%s) is not available in source dataset (%s/%s)" % (self.datetimes[0], model_start, model_end))

        try:
            assert self.datetimes[-1] > model_start
            assert self.datetimes[-1] < model_end
        except AssertionError:
            raise BaseDataControllerError("End time for model (%s) is not available in source dataset (%s/%s)" % (self.datetimes[-1], model_start, model_end))

        ds.closenc()
Пример #15
0
    def listen_for_results(self):
        try:
            # Get results back from queue, test for failed particles
            return_particles = []
            retrieved = 0.
            self.error_code = 0

            logger.info("Waiting for %i particle results" % len(self.particles))
            logger.progress((5, "Running model"))
            while retrieved < self.number_of_tasks:
                try:
                    # Returns a tuple of code, result
                    code, tempres = self.results.get(timeout=240)
                except Queue.Empty:

                    new_procs = []
                    old_procs = []
                    for p in self.procs:
                        if not p.is_alive() and p.exitcode != 0:
                            # Do what the Consumer would do if something finished.
                            # Add something to results queue
                            self.results.put((-3, "Zombie"))
                            # Decrement nproc (Consumer exits when this is 0)
                            with self.nproc_lock:
                                self.n_run.value = self.n_run.value - 1

                            # Remove task from queue (so they can be joined later on)
                            self.tasks.task_done()

                            # Start a new Consumer.  It will exit if there are no tasks available.
                            np = Consumer(self.tasks, self.results, self.n_run, self.nproc_lock, self.active, None, name=p.name)
                            new_procs.append(np)
                            old_procs.append(p)

                    for p in old_procs:
                        try:
                            self.procs.remove(p)
                        except ValueError:
                            logger.warn("Did not find %s in the list of processes.  Continuing on." % p.name)

                    for p in new_procs:
                        self.procs.append(p)
                        logger.warn("Started a new consumer (%s) to replace a zombie consumer" % p.name)
                        p.start()

                else:
                    # We got one.
                    retrieved += 1
                    if code is None:
                        logger.warn("Got an unrecognized response from a task.")
                    elif code == -1:
                        logger.warn("Particle %s has FAILED!!" % tempres.uid)
                    elif code == -3:
                        self.error_code = code
                        logger.info("A zombie process was caught and task was removed from queue")
                    elif isinstance(tempres, Particle):
                        logger.info("Particle %d finished" % tempres.uid)
                        return_particles.append(tempres)
                        # We mulitply by 95 here to save 5% for the exporting
                        logger.progress((round((retrieved / self.number_of_tasks) * 90., 1), "Particle %d finished" % tempres.uid))
                    else:
                        logger.info("Got a strange result on results queue: %s" % str(tempres))

                    logger.info("Retrieved %i/%i results" % (int(retrieved), self.number_of_tasks))

            if len(return_particles) != len(self.particles):
                logger.warn("Some particles failed and are not included in the output")

            # The results queue should be empty at this point
            assert self.results.empty() is True

            # Should be good to join on the tasks now that the queue is empty
            logger.info("Joining the task queue")
            self.tasks.join()

            self.particles = return_particles

        finally:
            # Join all processes
            logger.info("Joining the processes")
            for w in self.procs:
                    # Wait 20 seconds
                    w.join(20.)
                    if w.is_alive():
                        # Process is hanging, kill it.
                        logger.info("Terminating %s forcefully.  This should have exited itself." % w.name)
                        w.terminate()
Пример #16
0
    def setup_run(self, hydrodataset, **kwargs):

        self.hydrodataset = hydrodataset

        logger.setLevel(logging.PROGRESS)

        # Relax.
        time.sleep(0.5)

        # Add ModelController description to logfile
        logger.info(str(self))

        # Add the model descriptions to logfile
        for m in self._models:
            logger.info(str(m))

        # Calculate the model timesteps
        # We need times = len(self._nstep) + 1 since data is stored one timestep
        # after a particle is forced with the final timestep's data.
        self.times = list(range(0, (self._step * self._nstep) + 1, self._step))
        # Calculate a datetime object for each model timestep
        # This method is duplicated in CachingDataController and CachingForcer
        # using the 'times' variables above.  Will be useful in those other
        # locations for particles released at different times
        # i.e. released over a few days
        self.modelTimestep, self.datetimes = AsaTransport.get_time_objects_from_model_timesteps(
            self.times, start=self.start)

        logger.progress((1, "Setting up particle start locations"))
        point_locations = []
        if isinstance(self.geometry, Point):
            point_locations = [self.reference_location] * self._npart
        elif isinstance(self.geometry, Polygon) or isinstance(
                self.geometry, MultiPolygon):
            point_locations = [
                Location4D(latitude=loc.y,
                           longitude=loc.x,
                           depth=self._depth,
                           time=self.start)
                for loc in AsaTransport.fill_polygon_with_points(
                    goal=self._npart, polygon=self.geometry)
            ]

        # Initialize the particles
        logger.progress((2, "Initializing particles"))
        for x in range(0, self._npart):
            p = LarvaParticle(id=x)
            p.location = point_locations[x]
            # We don't need to fill the location gaps here for environment variables
            # because the first data collected actually relates to this original
            # position.
            # We do need to fill in fields such as settled, halted, etc.
            p.fill_status_gap()
            # Set the inital note
            p.note = p.outputstring()
            p.notes.append(p.note)
            self.particles.append(p)

        logger.progress((3, "Initializing and caching hydro model's grid %s" %
                         self.hydrodataset))
        try:
            ds = CommonDataset.open(self.hydrodataset)
            # Query the dataset for common variable names
            # and the time variable.
            logger.debug("Retrieving variable information from dataset")
            self.common_variables = self.get_common_variables_from_dataset(ds)
        except Exception:
            logger.exception("Failed to access dataset %s" % self.hydrodataset)
            raise BaseDataControllerError("Inaccessible Dataset: %s" %
                                          self.hydrodataset)

        self.timevar = None
        try:
            assert self.common_variables.get("u") in ds._current_variables
            assert self.common_variables.get("v") in ds._current_variables
            assert self.common_variables.get("x") in ds._current_variables
            assert self.common_variables.get("y") in ds._current_variables

            self.timevar = ds.gettimevar(self.common_variables.get("u"))
            model_start = self.timevar.get_dates()[0]
            model_end = self.timevar.get_dates()[-1]
        except AssertionError:
            logger.exception(
                "Could not locate variables needed to run model: %s" %
                str(self.common_variables))
            raise BaseDataControllerError(
                "A required data variable was not found in %s" %
                self.hydrodataset)
        finally:
            ds.closenc()

        try:
            assert self.start > model_start
            assert self.start < model_end
        except AssertionError:
            raise BaseDataControllerError(
                "Start time for model (%s) is not available in source dataset (%s/%s)"
                % (self.datetimes[0], model_start, model_end))

        try:
            assert self.datetimes[-1] > model_start
            assert self.datetimes[-1] < model_end
        except AssertionError:
            raise BaseDataControllerError(
                "End time for model (%s) is not available in source dataset (%s/%s)"
                % (self.datetimes[-1], model_start, model_end))
Пример #17
0
    def setup_run(self, hydrodataset, **kwargs):

        self.hydrodataset = hydrodataset

        logger.setLevel(logging.PROGRESS)

        # Relax.
        time.sleep(0.5)

        # Add ModelController description to logfile
        logger.info(str(self))

        # Add the model descriptions to logfile
        for m in self._models:
            logger.info(str(m))

        # Calculate the model timesteps
        # We need times = len(self._nstep) + 1 since data is stored one timestep
        # after a particle is forced with the final timestep's data.
        self.times = list(range(0, (self._step*self._nstep)+1, self._step))
        # Calculate a datetime object for each model timestep
        # This method is duplicated in CachingDataController and CachingForcer
        # using the 'times' variables above.  Will be useful in those other
        # locations for particles released at different times
        # i.e. released over a few days
        self.modelTimestep, self.datetimes = AsaTransport.get_time_objects_from_model_timesteps(self.times, start=self.start)

        logger.progress((1, "Setting up particle start locations"))
        point_locations = []
        if isinstance(self.geometry, Point):
            point_locations = [self.reference_location] * self._npart
        elif isinstance(self.geometry, Polygon) or isinstance(self.geometry, MultiPolygon):
            point_locations = [Location4D(latitude=loc.y, longitude=loc.x, depth=self._depth, time=self.start) for loc in AsaTransport.fill_polygon_with_points(goal=self._npart, polygon=self.geometry)]

        # Initialize the particles
        logger.progress((2, "Initializing particles"))
        for x in range(0, self._npart):
            p = LarvaParticle(id=x)
            p.location = point_locations[x]
            # We don't need to fill the location gaps here for environment variables
            # because the first data collected actually relates to this original
            # position.
            # We do need to fill in fields such as settled, halted, etc.
            p.fill_status_gap()
            # Set the inital note
            p.note = p.outputstring()
            p.notes.append(p.note)
            self.particles.append(p)

        logger.progress((3, "Initializing and caching hydro model's grid %s" % self.hydrodataset))
        try:
            ds = CommonDataset.open(self.hydrodataset)
            # Query the dataset for common variable names
            # and the time variable.
            logger.debug("Retrieving variable information from dataset")
            self.common_variables = self.get_common_variables_from_dataset(ds)
        except Exception:
            logger.exception("Failed to access dataset %s" % self.hydrodataset)
            raise BaseDataControllerError("Inaccessible Dataset: %s" % self.hydrodataset)

        self.timevar = None
        try:
            assert self.common_variables.get("u") in ds._current_variables
            assert self.common_variables.get("v") in ds._current_variables
            assert self.common_variables.get("x") in ds._current_variables
            assert self.common_variables.get("y") in ds._current_variables

            self.timevar = ds.gettimevar(self.common_variables.get("u"))
            model_start = self.timevar.get_dates()[0]
            model_end = self.timevar.get_dates()[-1]
        except AssertionError:
            logger.exception("Could not locate variables needed to run model: %s" % str(self.common_variables))
            raise BaseDataControllerError("A required data variable was not found in %s" % self.hydrodataset)
        finally:
            ds.closenc()

        try:
            assert self.start > model_start
            assert self.start < model_end
        except AssertionError:
            raise BaseDataControllerError("Start time for model (%s) is not available in source dataset (%s/%s)" % (self.datetimes[0], model_start, model_end))

        try:
            assert self.datetimes[-1] > model_start
            assert self.datetimes[-1] < model_end
        except AssertionError:
            raise BaseDataControllerError("End time for model (%s) is not available in source dataset (%s/%s)" % (self.datetimes[-1], model_start, model_end))
Пример #18
0
    def run(self, hydrodataset, **kwargs):

        # Add ModelController description to logfile
        logger.info(self)

        # Add the model descriptions to logfile
        for m in self._models:
            logger.info(m)

        # Calculate the model timesteps
        # We need times = len(self._nstep) + 1 since data is stored one timestep
        # after a particle is forced with the final timestep's data.
        times = range(0,(self._step*self._nstep)+1,self._step)
        # Calculate a datetime object for each model timestep
        # This method is duplicated in DataController and ForceParticle
        # using the 'times' variables above.  Will be useful in those other
        # locations for particles released at different times
        # i.e. released over a few days
        modelTimestep, self.datetimes = AsaTransport.get_time_objects_from_model_timesteps(times, start=self.start)

        time_chunk = self._time_chunk
        horiz_chunk = self._horiz_chunk
        low_memory = kwargs.get("low_memory", False)

        # Should we remove the cache file at the end of the run?
        remove_cache = kwargs.get("remove_cache", True)

        self.bathy_path = kwargs.get("bathy", None)

        self.cache_path = kwargs.get("cache", None)
        if self.cache_path is None:
            # Generate temp filename for dataset cache
            default_cache_dir = os.path.join(os.path.dirname(__file__), "_cache")
            temp_name = AsaRandom.filename(prefix=str(datetime.now().microsecond), suffix=".nc")
            self.cache_path = os.path.join(default_cache_dir, temp_name)
        
        logger.progress((1, "Setting up particle start locations"))
        point_locations = []
        if isinstance(self.geometry, Point):
            point_locations = [self.reference_location] * self._npart
        elif isinstance(self.geometry, Polygon) or isinstance(self.geometry, MultiPolygon):
            point_locations = [Location4D(latitude=loc.y, longitude=loc.x, depth=self._depth, time=self.start) for loc in AsaTransport.fill_polygon_with_points(goal=self._npart, polygon=self.geometry)]

        # Initialize the particles
        logger.progress((2, "Initializing particles"))
        for x in xrange(0, self._npart):
            p = LarvaParticle(id=x)
            p.location = point_locations[x]
            # We don't need to fill the location gaps here for environment variables
            # because the first data collected actually relates to this original
            # position.
            # We do need to fill in fields such as settled, halted, etc.
            p.fill_status_gap()
            # Set the inital note
            p.note = p.outputstring()
            p.notes.append(p.note)
            self.particles.append(p)

        # This is where it makes sense to implement the multiprocessing
        # looping for particles and models. Can handle each particle in 
        # parallel probably.
        #
        # Get the number of cores (may take some tuning) and create that
        # many workers then pass particles into the queue for the workers
        mgr = multiprocessing.Manager()
        nproc = multiprocessing.cpu_count() - 1
        if nproc <= 0:
            raise ValueError("Model does not run using less than two CPU cores")

        # Each particle is a task, plus the DataController
        number_of_tasks = len(self.particles) + 1

        # We need a process for each particle and one for the data controller
        nproc = min(number_of_tasks, nproc)

        # When a particle requests data
        data_request_lock = mgr.Lock()
        # PID of process with lock
        has_data_request_lock = mgr.Value('int',-1)

        nproc_lock = mgr.Lock()
        
        # Create the task queue for all of the particles and the DataController
        tasks = multiprocessing.JoinableQueue(number_of_tasks)
        # Create the result queue for all of the particles and the DataController
        results = mgr.Queue(number_of_tasks)
        
        # Create the shared state objects
        get_data = mgr.Value('bool', True)
        # Number of tasks
        n_run = mgr.Value('int', number_of_tasks)
        updating = mgr.Value('bool', False)

        # When something is reading from cache file
        read_lock = mgr.Lock()
        # list of PIDs that are reading
        has_read_lock = mgr.list()
        read_count = mgr.Value('int', 0)

        # When something is writing to the cache file
        write_lock = mgr.Lock()
        # PID of process with lock
        has_write_lock = mgr.Value('int',-1)

        point_get = mgr.Value('list', [0, 0, 0])
        active = mgr.Value('bool', True)
        
        logger.progress((3, "Initializing and caching hydro model's grid"))
        try:
            ds = CommonDataset.open(hydrodataset)
            # Query the dataset for common variable names
            # and the time variable.
            logger.debug("Retrieving variable information from dataset")
            common_variables = self.get_common_variables_from_dataset(ds)

            logger.debug("Pickling time variable to disk for particles")
            timevar = ds.gettimevar(common_variables.get("u"))
            f, timevar_pickle_path = tempfile.mkstemp()
            os.close(f)
            f = open(timevar_pickle_path, "wb")
            pickle.dump(timevar, f)
            f.close()
            ds.closenc()
        except:
            logger.warn("Failed to access remote dataset %s" % hydrodataset)
            raise DataControllerError("Inaccessible DAP endpoint: %s" % hydrodataset)


        # Add data controller to the queue first so that it 
        # can get the initial data and is not blocked
        
        logger.debug('Starting DataController')
        logger.progress((4, "Starting processes"))
        data_controller = parallel.DataController(hydrodataset, common_variables, n_run, get_data, write_lock, has_write_lock, read_lock, read_count,
                                                  time_chunk, horiz_chunk, times,
                                                  self.start, point_get, self.reference_location,
                                                  low_memory=low_memory,
                                                  cache=self.cache_path)
        tasks.put(data_controller)
        # Create DataController worker
        data_controller_process = parallel.Consumer(tasks, results, n_run, nproc_lock, active, get_data, name="DataController")
        data_controller_process.start()
        
        logger.debug('Adding %i particles as tasks' % len(self.particles))
        for part in self.particles:
            forcing = parallel.ForceParticle(part,
                                        hydrodataset,
                                        common_variables,
                                        timevar_pickle_path,
                                        times,
                                        self.start,
                                        self._models,
                                        self.reference_location.point,
                                        self._use_bathymetry,
                                        self._use_shoreline,
                                        self._use_seasurface,
                                        get_data,
                                        n_run,
                                        read_lock,
                                        has_read_lock,
                                        read_count,
                                        point_get,
                                        data_request_lock,
                                        has_data_request_lock,
                                        reverse_distance=self.reverse_distance,
                                        bathy=self.bathy_path,
                                        shoreline_path=self.shoreline_path,
                                        shoreline_feature=self.shoreline_feature,
                                        cache=self.cache_path,
                                        time_method=self.time_method)
            tasks.put(forcing)

        # Create workers for the particles.
        procs = [ parallel.Consumer(tasks, results, n_run, nproc_lock, active, get_data, name="ForceParticle-%d"%i)
                  for i in xrange(nproc - 1) ]
        for w in procs:
            w.start()
            logger.debug('Started %s' % w.name)

        # Get results back from queue, test for failed particles
        return_particles = []
        retrieved = 0.
        error_code = 0

        logger.info("Waiting for %i particle results" % len(self.particles))
        logger.progress((5, "Running model"))
        while retrieved < number_of_tasks:
            try:
                # Returns a tuple of code, result
                code, tempres = results.get(timeout=240)
            except Queue.Empty:
                # Poll the active processes to make sure they are all alive and then continue with loop
                if not data_controller_process.is_alive() and data_controller_process.exitcode != 0:
                    # Data controller is zombied, kill off other processes.
                    get_data.value == False
                    results.put((-2, "DataController"))

                new_procs = []
                old_procs = []
                for p in procs:
                    if not p.is_alive() and p.exitcode != 0:
                        # Do what the Consumer would do if something finished.
                        # Add something to results queue
                        results.put((-3, "ZombieParticle"))
                        # Decrement nproc (DataController exits when this is 0)
                        with nproc_lock:
                            n_run.value = n_run.value - 1

                        # Remove task from queue (so they can be joined later on)
                        tasks.task_done()

                        # Start a new Consumer.  It will exit if there are no tasks available.
                        np = parallel.Consumer(tasks, results, n_run, nproc_lock, active, get_data, name=p.name)
                        new_procs.append(np)
                        old_procs.append(p)
                        
                        # Release any locks the PID had
                        if p.pid in has_read_lock:
                            with read_lock:
                                read_count.value -= 1
                                has_read_lock.remove(p.pid)

                        if has_data_request_lock.value == p.pid:
                            has_data_request_lock.value = -1
                            try:
                                data_request_lock.release()
                            except:
                                pass
                            
                        if has_write_lock.value == p.pid:
                            has_write_lock.value = -1
                            try:
                                write_lock.release()
                            except:
                                pass
                            

                for p in old_procs:
                    try:
                        procs.remove(p)
                    except ValueError:
                        logger.warn("Did not find %s in the list of processes.  Continuing on." % p.name)

                for p in new_procs:
                    procs.append(p)
                    logger.warn("Started a new consumer (%s) to replace a zombie consumer" % p.name)
                    p.start()
                
            else:
                # We got one.
                retrieved += 1
                if code == None:
                    logger.warn("Got an unrecognized response from a task.")
                elif code == -1:
                    logger.warn("Particle %s has FAILED!!" % tempres.uid)
                elif code == -2:
                    error_code = code
                    logger.warn("DataController has FAILED!!  Removing cache file so the particles fail.")
                    try:
                        os.remove(self.cache_path)
                    except OSError:
                        logger.debug("Could not remove cache file, it probably never existed")
                        pass
                elif code == -3:
                    error_code = code
                    logger.info("A zombie process was caught and task was removed from queue")
                elif isinstance(tempres, Particle):
                    logger.info("Particle %d finished" % tempres.uid)
                    return_particles.append(tempres)
                    # We mulitply by 95 here to save 5% for the exporting
                    logger.progress((round((retrieved / number_of_tasks) * 90.,1), "Particle %d finished" % tempres.uid))
                elif tempres == "DataController":
                    logger.info("DataController finished")
                    logger.progress((round((retrieved / number_of_tasks) * 90.,1), "DataController finished"))
                else:
                    logger.info("Got a strange result on results queue")
                    logger.info(str(tempres))

                logger.info("Retrieved %i/%i results" % (int(retrieved),number_of_tasks))
        
        if len(return_particles) != len(self.particles):
            logger.warn("Some particles failed and are not included in the output")

        # The results queue should be empty at this point
        assert results.empty() is True

        # Should be good to join on the tasks now that the queue is empty
        logger.info("Joining the task queue")
        tasks.join()

        # Join all processes
        logger.info("Joining the processes")
        for w in procs + [data_controller_process]:
                # Wait 10 seconds
                w.join(10.)
                if w.is_alive():
                    # Process is hanging, kill it.
                    logger.info("Terminating %s forcefully.  This should have exited itself." % w.name)
                    w.terminate()
                    
        logger.info('Workers complete')

        self.particles = return_particles

        # Remove Manager so it shuts down
        del mgr

        # Remove pickled timevar
        os.remove(timevar_pickle_path)

        # Remove the cache file
        if remove_cache is True:
            try:
                os.remove(self.cache_path)
            except OSError:
                logger.debug("Could not remove cache file, it probably never existed")

        logger.progress((96, "Exporting results"))

        if len(self.particles) > 0:
            # If output_formats and path specified,
            # output particle run data to disk when completed
            if "output_formats" in kwargs:
                # Make sure output_path is also included
                if kwargs.get("output_path", None) != None:
                    formats = kwargs.get("output_formats")
                    output_path = kwargs.get("output_path")
                    if isinstance(formats, list):
                        for format in formats:
                            logger.info("Exporting to: %s" % format)
                            try:
                                self.export(output_path, format=format)
                            except:
                                logger.error("Failed to export to: %s" % format)
                    else:
                        logger.warn('The output_formats parameter should be a list, not saving any output!')  
                else:
                    logger.warn('No output path defined, not saving any output!')  
            else:
                logger.warn('No output format defined, not saving any output!')
        else:
            logger.warn("Model didn't actually do anything, check the log.")
            if error_code == -2:
                raise DataControllerError("Error in the DataController")
            else:
                raise ModelError("Error in the model")

        logger.progress((99, "Model Run Complete"))
        return
Пример #19
0
    def start_tasks(self, **kwargs):
        try:
            logger.info('Starting CachingDataController')

            # Add data controller to the queue first so that it
            # can get the initial data and is not blocked
            data_controller = CachingDataController(self.hydrodataset,
                                                    self.common_variables,
                                                    self.n_run,
                                                    self.get_data,
                                                    self.write_lock,
                                                    self.has_write_lock,
                                                    self.read_lock,
                                                    self.read_count,
                                                    self.time_chunk,
                                                    self.horiz_chunk,
                                                    self.times,
                                                    self.start,
                                                    self.point_get,
                                                    self.reference_location,
                                                    cache_path=self.cache_path)
            self.tasks.put(data_controller)
            # Create CachingDataController worker
            self.data_controller_process = Consumer(
                self.tasks,
                self.results,
                self.n_run,
                self.nproc_lock,
                self.active,
                self.get_data,
                name="CachingDataController")
            self.data_controller_process.start()

            logger.info('Adding %i particles as tasks' %
                        self.total_particle_count())

            for part in self.particles:
                forcer = CachingForcer(
                    self.cache_path,
                    particle=part,
                    common_variables=self.common_variables,
                    timevar=self.timevar,
                    times=self.times,
                    start_time=self.start,
                    models=self._models,
                    release_location_centroid=self.reference_location.point,
                    usebathy=self._use_bathymetry,
                    useshore=self._use_shoreline,
                    usesurface=self._use_seasurface,
                    reverse_distance=self.reverse_distance,
                    bathy_path=self.bathy_path,
                    shoreline_path=self.shoreline_path,
                    shoreline_feature=self.shoreline_feature,
                    time_method=self.time_method,
                    shoreline_index_buffer=self.shoreline_index_buffer,
                    get_data=self.get_data,
                    read_lock=self.read_lock,
                    has_read_lock=self.has_read_lock,
                    read_count=self.read_count,
                    point_get=self.point_get,
                    data_request_lock=self.data_request_lock,
                    has_data_request_lock=self.has_data_request_lock)
                self.tasks.put(forcer)

            # Create workers for the particles.
            self.procs = [
                Consumer(self.tasks,
                         self.results,
                         self.n_run,
                         self.nproc_lock,
                         self.active,
                         self.get_data,
                         name="CachingForcer-%d" % i)
                for i in range(self.nproc - 1)
            ]
            logger.progress((5, 'Running model'))
            for w in self.procs:
                w.start()
                logger.info('Started %s' % w.name)

            return True

        except Exception:
            logger.exception("Something didn't start correctly!")
            return False
Пример #20
0
    def listen_for_results(self, output_h5_file, total_particles):
        try:
            # Get results back from queue, test for failed particles
            return_particles = []
            retrieved = 0.
            self.error_code = 0

            logger.info("Waiting for %i particle results" % total_particles)
            while retrieved < self.total_task_count(
            ):  # One for the CachingDataController

                logger.info("looping in listen_for_results")

                try:
                    # Returns a tuple of code, result
                    code, tempres = self.results.get(timeout=240)
                except queue.Empty:
                    # Poll the active processes to make sure they are all alive and then continue with loop
                    if not self.data_controller_process.is_alive(
                    ) and self.data_controller_process.exitcode != 0:
                        # Data controller is zombied, kill off other processes.
                        self.get_data.value is False
                        self.results.put((-2, "CachingDataController"))

                    new_procs = []
                    old_procs = []
                    for p in self.procs:
                        if not p.is_alive() and p.exitcode != 0:
                            # Do what the Consumer would do if something finished.
                            # Add something to results queue
                            self.results.put((-3, "ZombieParticle"))
                            # Decrement nproc (CachingDataController exits when this is 0)
                            with self.nproc_lock:
                                self.n_run.value = self.n_run.value - 1

                            # Remove task from queue (so they can be joined later on)
                            self.tasks.task_done()

                            # Start a new Consumer.  It will exit if there are no tasks available.
                            np = Consumer(self.tasks,
                                          self.results,
                                          self.n_run,
                                          self.nproc_lock,
                                          self.active,
                                          self.get_data,
                                          name=p.name)
                            new_procs.append(np)
                            old_procs.append(p)

                            # Release any locks the PID had
                            if p.pid in self.has_read_lock:
                                with self.read_lock:
                                    self.read_count.value -= 1
                                    self.has_read_lock.remove(p.pid)

                            if self.has_data_request_lock.value == p.pid:
                                self.has_data_request_lock.value = -1
                                try:
                                    self.data_request_lock.release()
                                except:
                                    pass

                            if self.has_write_lock.value == p.pid:
                                self.has_write_lock.value = -1
                                try:
                                    self.write_lock.release()
                                except:
                                    pass

                    for p in old_procs:
                        try:
                            self.procs.remove(p)
                        except ValueError:
                            logger.warn(
                                "Did not find %s in the list of processes.  Continuing on."
                                % p.name)

                    for p in new_procs:
                        self.procs.append(p)
                        logger.warn(
                            "Started a new consumer (%s) to replace a zombie consumer"
                            % p.name)
                        p.start()

                else:
                    # We got one.
                    retrieved += 1
                    if code is None:
                        logger.warn(
                            "Got an unrecognized response from a task.")
                    elif code == -1:
                        logger.warn("Particle %s has FAILED!!" % tempres.uid)
                    elif code == -2:
                        self.error_code = code
                        logger.warn(
                            "CachingDataController has FAILED!!  Removing cache file so the particles fail."
                        )
                        try:
                            os.remove(self.cache_path)
                        except OSError:
                            logger.debug(
                                "Could not remove cache file, it probably never existed"
                            )
                            pass
                    elif code == -3:
                        self.error_code = code
                        logger.info(
                            "A zombie process was caught and task was removed from queue"
                        )
                    elif isinstance(tempres, Particle):
                        logger.info("Particle %d finished" % tempres.uid)
                        return_particles.append(tempres)
                        # We mulitply by 95 here to save 5% for the exporting
                        logger.progress(
                            (round((retrieved / self.total_task_count()) * 90.,
                                   1), "Particle %d finished" % tempres.uid))
                    elif tempres == "CachingDataController":
                        logger.info("CachingDataController finished")
                        logger.progress(
                            (round((retrieved / self.total_task_count()) * 90.,
                                   1), "CachingDataController finished"))
                    else:
                        logger.info("Got a strange result on results queue")
                        logger.info(str(tempres))

                    logger.info("Retrieved %i/%i results" %
                                (int(retrieved), self.total_task_count()))

                # Relax
                time.sleep(1)

            if len(return_particles) != total_particles:
                logger.warn(
                    "Some particles failed and are not included in the output")

            # The results queue should be empty at this point
            assert self.results.empty() is True

            # Should be good to join on the tasks now that the queue is empty
            logger.info("Joining the task queue")
            self.tasks.join()
            self.tasks.close()
            self.tasks.join_thread()

        finally:
            # Join all processes
            logger.info("Joining the processes")
            for w in self.procs + [self.data_controller_process]:
                # Wait 20 seconds
                w.join(20.)
                if w.is_alive():
                    # Process is hanging, kill it.
                    logger.info(
                        "Terminating %s forcefully.  This should have exited itself."
                        % w.name)
                    w.terminate()

        if self.error_code == -2:
            raise ValueError(
                "Error in the BaseDataController (error_code was -2)")

        results = ex.ResultsPyTable(output_h5_file)
        for p in return_particles:
            for x in range(len(p.locations)):
                results.write(p.timestep_index_dump(x))
        results.compute()
        results.close()

        return