Пример #1
0
 def __init__(self, database_train, database_validation, database_test, labels_train, labels_validation, labels_test,
              train_class_balance, thresholds):
     """
     Performs entity resolution on a database at varying thresholds
     :param database_train: Database object for training match function
     :param database_validation: Database object for estimating match precision/recall performance
     :param database_test: Database object for testing entity resolution
     :param labels_train: A dictionary of the true labels [record id, label]
     :param labels_validation: A dictionary of the true labels [record id, label]
     :param labels_test: A dictionary of the true labels [record id, label]
     :param train_class_balance: Float [0, 1.0]. Train with this percent of positive samples
     :param thresholds: List of thresholds to run ER at
     """
     self._database_train = database_train
     self._database_validation = database_validation
     self._database_test = database_test
     self._labels_train = labels_train
     self._labels_validation = labels_validation
     self._labels_test = labels_test
     self._train_class_balance = train_class_balance
     self.thresholds = thresholds
     print 'Generating pairwise seed for training database'
     self._train_pair_seed = generate_pair_seed(self._database_train, self._labels_train, train_class_balance, max_minor_class=5000)
     self._validation_seed = generate_pair_seed(self._database_validation, self._labels_validation, 0.5, max_minor_class=5000)
     self._predicted_labels, self.metrics, self.new_metrics = self.run()
 def setUp(self):
     self._test_path = 'test_annotations_cleaned.csv'
     self._database = Database(self._test_path)
     self._labels = fast_strong_cluster(self._database)
     self._blocking = BlockingScheme(self._database, single_block=True)
     self._er = EntityResolution()
     decision_threshold = 1.0
     pair_seed = generate_pair_seed(self._database, self._labels, 0.5)
     self._match_function = LogisticMatchFunction(self._database, self._labels, pair_seed, decision_threshold)
 def test_test(self):
     database = Database('test_annotations_10000_cleaned.csv', header_path='test_annotations_10000_cleaned_header.csv')
     database_train = database.sample_and_remove(5000)
     database_test = database
     labels_train = fast_strong_cluster(database_train)
     labels_test = fast_strong_cluster(database_test)
     train_seed = generate_pair_seed(database_train, labels_train, 0.5)
     match_function = LogisticMatchFunction(database_train, labels_train, train_seed, 0.7)
     roc = match_function.test(database_test, labels_test, 0.5)
     roc.make_plot()
 def test_pairs(self):
     database = Database('test_annotations_10000_cleaned.csv', header_path='test_annotations_10000_cleaned_header.csv')
     labels = fast_strong_cluster(database)
     pair_seed = generate_pair_seed(database, labels, 0.5)
     # x1_a, x2_a, m_a = _get_pairs(database, labels, 10, balancing=True)
     # x1_b, x2_b, m_b = _get_pairs(database, labels, 10, balancing=True)
     # self.assertNotEqual(x1_a, x1_b)
     # self.assertNotEqual(x2_a, x2_b)
     # self.assertNotEqual(m_a, m_b)
     x1_a, x2_a, m_a = get_pairwise_features(database, labels, pair_seed)
     x1_b, x2_b, m_b = get_pairwise_features(database, labels, pair_seed)
     np.testing.assert_array_equal(x1_a, x1_b)
     np.testing.assert_array_equal(x2_a, x2_b)
     np.testing.assert_array_equal(m_a, m_b)
 def test_match(self):
     r0 = self._database.records[0]
     r1 = self._database.records[1]
     r2 = self._database.records[2]
     r3 = self._database.records[3]
     labels = {
         0: 0,
         1: 0,
         2: 1,
         3: 1
     }
     pair_seed = generate_pair_seed(self._database, labels, 0.5)
     self._match_function._train(self._database, labels, pair_seed)
     self.assertTrue(self._match_function.match(r0, deepcopy(r0))[0])
     self.assertTrue(self._match_function.match(r1, deepcopy(r1))[0])
     self.assertTrue(self._match_function.match(r2, deepcopy(r2))[0])
     self.assertTrue(self._match_function.match(r3, deepcopy(r3))[0])
 def test_completeness(self):
     database = Database('test_annotations_10000_cleaned.csv', max_records=1000, header_path='test_annotations_10000_cleaned_header.csv')
     database_train = database.sample_and_remove(800)
     database_test = database
     labels_train = fast_strong_cluster(database_train)
     labels_test = fast_strong_cluster(database_test)
     er = EntityResolution()
     pair_seed = generate_pair_seed(database_train, labels_train, 0.5)
     match_function = LogisticMatchFunction(database_train, labels_train, pair_seed, 0.99)
     blocking_scheme = BlockingScheme(database_test)
     labels_pred = er.run(database_test, match_function, blocking_scheme, cores=2)
     number_fast_strong_records = len(labels_train) + len(labels_test)
     self.assertEqual(number_fast_strong_records, 1000)
     self.assertEqual(sorted((labels_train.keys() + labels_test.keys())), range(0, 1000))
     number_swoosh_records = len(get_ids(database_test.records))
     self.assertEqual(number_swoosh_records, len(database_test.records))
     self.assertEqual(get_ids(database_test.records), sorted(labels_test.keys()))
     self.assertEqual(get_ids(database_test.records), sorted(labels_pred.keys()))
 def setUp(self):
     self._database = Database('test_annotations_cleaned.csv')
     labels = fast_strong_cluster(self._database)
     pair_seed = generate_pair_seed(self._database, labels, 0.5)
     self._blocking = BlockingScheme(self._database)
     self._match_function = LogisticMatchFunction(self._database, labels, pair_seed, 0.5)
Пример #8
0
def main():
    """
    Runs a single entity resolution on data (real or synthetic) using a match function (logistic regression, decision
    tree, or random forest)
    """
    data_type = 'real'
    decision_threshold = 0.7
    train_class_balance = 0.5
    max_block_size = 1000
    cores = 2
    if data_type == 'synthetic':
        database_train = SyntheticDatabase(100, 10, 10)
        corruption = 0.1
        corruption_array = corruption*np.random.normal(loc=0.0, scale=1.0, size=[1000,
                                                       database_train.database.feature_descriptor.number])
        database_train.corrupt(corruption_array)

        database_validation = SyntheticDatabase(100, 10, 10)
        corruption_array = corruption*np.random.normal(loc=0.0, scale=1.0, size=[1000,
                                                       database_validation.database.feature_descriptor.number])
        database_validation.corrupt(corruption_array)

        database_test = SyntheticDatabase(10, 10, 10)
        corruption_array = corruption*np.random.normal(loc=0.0, scale=1.0, size=[1000,
                                                       database_test.database.feature_descriptor.number])
        database_test.corrupt(corruption_array)
        labels_train = database_train.labels
        labels_validation = database_validation.labels
        labels_test = database_test.labels
        database_train = database_train.database
        database_validation = database_validation.database
        database_test = database_test.database
        single_block = True
    elif data_type == 'real':
        # Uncomment to use all features (annotations and LM)
        #database_train = Database('../data/trafficking/cluster_subsample0_10000.csv', header_path='../data/trafficking/cluster_subsample_header_all.csv')
        #database_validation = Database('../data/trafficking/cluster_subsample1_10000.csv', header_path='../data/trafficking/cluster_subsample_header_all.csv')
        #database_test = Database('../data/trafficking/cluster_subsample2_10000.csv', header_path='../data/trafficking/cluster_subsample_header_all.csv')

        # Uncomment to only use annotation features
        #database_train = Database('../data/trafficking/cluster_subsample0_10000.csv', header_path='../data/trafficking/cluster_subsample_header_annotations.csv')
        #database_validation = Database('../data/trafficking/cluster_subsample1_10000.csv', header_path='../data/trafficking/cluster_subsample_header_annotations.csv')
        #database_test = Database('../data/trafficking/cluster_subsample2_10000.csv', header_path='../data/trafficking/cluster_subsample_header_annotations.csv')

        # Uncomment to only use LM features
        database_train = Database('../data/trafficking/cluster_subsample0_10000.csv', header_path='../data/trafficking/cluster_subsample_header_LM.csv')
        database_validation = Database('../data/trafficking/cluster_subsample1_10000.csv', header_path='../data/trafficking/cluster_subsample_header_LM.csv')
        database_test = Database('../data/trafficking/cluster_subsample2_10000.csv', header_path='../data/trafficking/cluster_subsample_header_LM.csv')

        labels_train = fast_strong_cluster(database_train)
        labels_validation = fast_strong_cluster(database_validation)
        labels_test = fast_strong_cluster(database_test)
        single_block = False
    else:
        Exception('Invalid experiment type'+data_type)

    entities = deepcopy(database_test)
    blocking_scheme = BlockingScheme(entities, max_block_size, single_block=single_block)

    train_seed = generate_pair_seed(database_train, labels_train, train_class_balance, require_direct_match=True, max_minor_class=5000)
    validation_seed = generate_pair_seed(database_validation, labels_validation, 0.5, require_direct_match=True, max_minor_class=5000)
    # forest_all = ForestMatchFunction(database_all_train, labels_train, train_seed, decision_threshold)
    # forest_all.test(database_all_validation, labels_validation, validation_seed)
    # tree_all = TreeMatchFunction(database_all_train, labels_train, train_seed, decision_threshold)
    # tree_all.test(database_all_validation, labels_validation, validation_seed)
    # logistic_all = LogisticMatchFunction(database_all_train, labels_train, train_seed, decision_threshold)
    # logistic_all.test(database_all_validation, labels_validation, validation_seed)

    forest_annotations = ForestMatchFunction(database_train, labels_train, train_seed, decision_threshold)
    roc = forest_annotations.test(database_validation, labels_validation, validation_seed)
    #roc.make_plot()
    #plt.show()

    # tree_annotations = TreeMatchFunction(database_annotations_train, labels_train, train_seed, decision_threshold)
    # tree_annotations.test(database_annotations_validation, labels_validation, validation_seed)
    # logistic_annotations = LogisticMatchFunction(database_annotations_train, labels_train, train_seed, decision_threshold)
    # logistic_annotations.test(database_annotations_validation, labels_validation, validation_seed)

    # forest_LM = ForestMatchFunction(database_LM_train, labels_train, train_seed, decision_threshold)
    # forest_LM.test(database_LM_validation, labels_validation, validation_seed)
    # tree_LM = TreeMatchFunction(database_LM_train, labels_train, train_seed, decision_threshold)
    # tree_LM.test(database_LM_validation, labels_validation, validation_seed)
    # logistic_LM = LogisticMatchFunction(database_LM_train, labels_train, train_seed, decision_threshold)
    # logistic_LM.test(database_LM_validation, labels_validation, validation_seed)

    # forest_all.roc.write_rates('match_forest_all.csv')
    # tree_all.roc.write_rates('match_tree_all.csv')
    # logistic_all.roc.write_rates('match_logistic_all.csv')
    #
    # forest_annotations.roc.write_rates('match_forest_annotations.csv')
    # tree_annotations.roc.write_rates('match_tree_annotations.csv')
    # logistic_annotations.roc.write_rates('match_logistic_annotations.csv')
    #
    # forest_LM.roc.write_rates('match_forest_LM.csv')
    # tree_LM.roc.write_rates('match_tree_LM.csv')
    # logistic_LM.roc.write_rates('match_logistic_LM.csv')
    # ax = forest_all.roc.make_plot()
    # _ = tree_all.roc.make_plot(ax=ax)
    # _ = logistic_all.roc.make_plot(ax=ax)
    # plt.show()
    #forest_annotations.roc.make_plot()
    #plt.show()

    #entities.merge(strong_labels)

    #er = EntityResolution()
    #weak_labels = er.run(entities, match_function, blocking_scheme, cores=cores)
    weak_labels = weak_connected_components(database_test, forest_annotations, blocking_scheme)
    entities.merge(weak_labels)
    #strong_labels = fast_strong_cluster(entities)
    #entities.merge(strong_labels)

    # out = open('ER.csv', 'w')
    # out.write('phone,cluster_id\n')
    # for cluster_counter, (entity_id, entity) in enumerate(entities.records.iteritems()):
    #     phone_index = 21
    #     for phone in entity.features[phone_index]:
    #         out.write(str(phone)+','+str(cluster_counter)+'\n')
    # out.close()

    print 'Metrics using strong features as surrogate label. Entity resolution run using weak and strong features'
    metrics = Metrics(labels_test, weak_labels)
    # estimated_test_class_balance = count_pairwise_class_balance(labels_test)
    # new_metrics = NewMetrics(database_all_test, weak_labels, forest_all, estimated_test_class_balance)
    metrics.display()
Пример #9
0
def synthetic_sizes():
    """
    Sizes experiment here
    """
    resolution = 88
    number_features = 10
    number_entities = np.linspace(10, 100, num=resolution)
    number_entities = number_entities.astype(int)
    records_per_entity = 10
    #train_database_size = 100
    train_class_balance = 0.5
    #validation_database_size = 100
    corruption_multiplier = .001

    databases = list()
    db = SyntheticDatabase(number_entities[0], records_per_entity, number_features=number_features)
    databases.append(deepcopy(db))
    add_entities = [x - number_entities[i - 1] for i, x in enumerate(number_entities)][1:]
    for add in add_entities:
        db.add(add, records_per_entity)
        databases.append(deepcopy(db))
    corruption = np.random.normal(loc=0.0, scale=1.0, size=[number_entities[-1]*records_per_entity, number_features])
    train = deepcopy(databases[0])
    validation = deepcopy(databases[0])
    train.corrupt(corruption_multiplier*np.random.normal(loc=0.0, scale=1.0, size=[len(train.database.records), number_features]))
    validation.corrupt(corruption_multiplier*np.random.normal(loc=0.0, scale=1.0, size=[len(train.database.records), number_features]))
    for db in databases:
        db.corrupt(corruption_multiplier*corruption[:len(db.database.records), :])
    er = EntityResolution()
    train_pair_seed = generate_pair_seed(train.database, train.labels, train_class_balance)
    weak_match_function = LogisticMatchFunction(train.database, train.labels, train_pair_seed, 0.5)
    ROC = weak_match_function.test(validation.database, validation.labels, 0.5)
    #ROC.make_plot()

    ## Optimize ER on small dataset
    thresholds = np.linspace(0, 1.0, 10)
    metrics_list = list()
    #new_metrics_list = list()
    pairwise_precision = list()
    pairwise_recall = list()
    pairwise_f1 = list()
    for threshold in thresholds:
        weak_match_function.set_decision_threshold(threshold)
        labels_pred = er.run(deepcopy(databases[0].database), weak_match_function, single_block=True,
                             max_block_size=np.Inf, cores=1)
        met = Metrics(databases[0].labels, labels_pred)
        metrics_list.append(met)
        pairwise_precision.append(met.pairwise_precision)
        pairwise_recall.append(met.pairwise_recall)
        pairwise_f1.append(met.pairwise_f1)
        #class_balance_test = get_pairwise_class_balance(databases[0].labels)
        #new_metrics_list.append(NewMetrics(databases[0].database, er, class_balance_test))
    plt.plot(thresholds, pairwise_precision, label='Precision')
    plt.plot(thresholds, pairwise_recall, label='Recall')
    plt.plot(thresholds, pairwise_f1, label='F1')
    plt.xlabel('Threshold')
    plt.legend()
    plt.ylabel('Score')
    plt.title('Optimizing ER on small dataset')
    #i = np.argmax(np.array(pairwise_f1))
    #small_optimal_threshold = thresholds[i]  # optimize this
    small_optimal_threshold = 0.6
    print 'Optimal small threshold set at =', small_optimal_threshold
    plt.show()

    ## Possible score by optimizing on larger dataset
    metrics_list = list()
    pairwise_precision = list()
    pairwise_recall = list()
    pairwise_f1 = list()
    thresholds_largedataset = np.linspace(0.6, 1.0, 8)
    precision_lower_bound = list()
    recall_lower_bound = list()
    f1_lower_bound = list()
    for threshold in thresholds_largedataset:
        weak_match_function.set_decision_threshold(threshold)
        labels_pred = er.run(deepcopy(databases[-1].database), weak_match_function, single_block=True,
                             max_block_size=np.Inf, cores=1)
        met = Metrics(databases[-1].labels, labels_pred)
        metrics_list.append(met)
        pairwise_precision.append(met.pairwise_precision)
        pairwise_recall.append(met.pairwise_recall)
        pairwise_f1.append(met.pairwise_f1)
        class_balance_test = count_pairwise_class_balance(databases[-1].labels)
        new_metric = NewMetrics(databases[-1].database, labels_pred, weak_match_function, class_balance_test)
        precision_lower_bound.append(new_metric.precision_lower_bound)
        recall_lower_bound.append(new_metric.recall_lower_bound)
        f1_lower_bound.append(new_metric.f1_lower_bound)
    plt.plot(thresholds_largedataset, pairwise_precision, label='Precision', color='r')
    plt.plot(thresholds_largedataset, pairwise_recall, label='Recall', color='b')
    plt.plot(thresholds_largedataset, pairwise_f1, label='F1', color='g')
    plt.plot(thresholds_largedataset, precision_lower_bound, label='Precision Bound', color='r', linestyle=':')
    plt.plot(thresholds_largedataset, recall_lower_bound, label='Recall Bound', color='b', linestyle=':')
    plt.plot(thresholds_largedataset, f1_lower_bound, label='F1 Bound', color='g', linestyle=':')
    i = np.argmax(np.array(f1_lower_bound))
    large_optimal_threshold = thresholds_largedataset[i]
    print 'Optimal large threshold automatically set at =', large_optimal_threshold
    print 'If not correct: debug.'
    plt.xlabel('Threshold')
    plt.legend()
    plt.ylabel('Score')
    plt.title('Optimizing ER on large dataset')
    plt.show()

    ## Run on all dataset sizes
    #new_metrics_list = list()
    database_sizes = list()
    small_pairwise_precision = list()
    small_pairwise_recall = list()
    small_pairwise_f1 = list()
    large_precision_bound = list()
    large_precision_bound_lower_ci = list()
    large_precision_bound_upper_ci = list()
    large_precision = list()
    large_recall_bound = list()
    large_recall_bound_lower_ci = list()
    large_recall_bound_upper_ci = list()
    large_recall = list()
    large_f1 = list()
    large_f1_bound = list()
    for db in databases:
        print 'Analyzing synthetic database with', len(db.database.records), 'records'
        database_sizes.append(len(db.database.records))
        weak_match_function.set_decision_threshold(small_optimal_threshold)
        labels_pred = er.run(db.database, weak_match_function, single_block=True, max_block_size=np.Inf, cores=1)
        met = Metrics(db.labels, labels_pred)
        small_pairwise_precision.append(met.pairwise_precision)
        small_pairwise_recall.append(met.pairwise_recall)
        small_pairwise_f1.append(met.pairwise_f1)
        weak_match_function.set_decision_threshold(large_optimal_threshold)
        labels_pred = er.run(db.database, weak_match_function, single_block=True, max_block_size=np.Inf, cores=1)
        met = Metrics(db.labels, labels_pred)
        large_precision.append(met.pairwise_precision)
        large_recall.append(met.pairwise_recall)
        large_f1.append(met.pairwise_f1)
        class_balance_test = count_pairwise_class_balance(db.labels)
        new_metric = NewMetrics(db.database, labels_pred, weak_match_function, class_balance_test)
        large_precision_bound.append(new_metric.precision_lower_bound)
        large_recall_bound.append(new_metric.recall_lower_bound)
        large_f1_bound.append(new_metric.f1_lower_bound)
        large_precision_bound_lower_ci.append(new_metric.precision_lower_bound_lower_ci)
        large_precision_bound_upper_ci.append(new_metric.precision_lower_bound_upper_ci)
        large_recall_bound_lower_ci.append(new_metric.recall_lower_bound_lower_ci)
        large_recall_bound_upper_ci.append(new_metric.recall_lower_bound_upper_ci)

    with open('synthetic_sizes_temp.csv', 'wb') as f:
        f.write('Database size, Precision (small opt), Recall (small opt), F1 (small opt), Precision (large opt), Precision bound (large opt), Lower CI, Upper CI, Recall (large opt), Recall bound (large opt), Lower CI, Upper CI, F1 (large opt), F1 bound (large opt)\n')
        writer = csv.writer(f)
        writer.writerows(izip(database_sizes, small_pairwise_precision, small_pairwise_recall, small_pairwise_f1, large_precision, large_precision_bound, large_precision_bound_lower_ci, large_precision_bound_upper_ci, large_recall, large_recall_bound, large_recall_bound_lower_ci, large_recall_bound_upper_ci, large_f1, large_f1_bound))
    f.close()
    plt.figure()
    plt.plot(database_sizes, pairwise_precision, label='Precision', color='#4477AA', linewidth=3)
    plt.plot(database_sizes, pairwise_recall, label='Recall', color='#CC6677', linewidth=3)
    #plt.plot(database_sizes, pairwise_f1, label='F1', color='#DDCC77', linewidth=2)
    plt.ylim([0, 1.05])
    plt.yticks([0, 0.2, 0.4, 0.6, 0.8, 1.0])
    plt.legend(title='Pairwise:', loc='lower left')
    plt.xlabel('Number of Records')
    plt.ylabel('Pairwise Score')
    plt.title('Performance Degredation')
    plt.show()