def cs(cls, **kwargs): """ Each tree represents a set of hyperparameter spaces and is a, possibly infinite, set of configurations. Parameters ---------- data If given, 'data' limits the search interval of some hyperparameters Returns ------- Tree representing all the possible hyperparameter spaces. """ tree = cls.cs_impl(**kwargs) if 'config_spaces' in kwargs: del kwargs['config_spaces'] hps = tree.hps.copy() hps['module'] = CatHP(choice, a=[cls.__module__]) hps['class'] = CatHP(choice, a=[cls.__name__]) # Freeze args passed via kwargs for k, v in kwargs.items(): hps[k] = FixedHP(v) return tree.updated(hps=hps)
def cs_impl(cls): hps = { 'n_neighbors': IntHP(uniform, low=1, high=15), 'weights': CatHP(choice, a=['uniform', 'distance']), 'algorithm': CatHP(choice, a=['kd_tree', 'ball_tree']), 'leaf_size': IntHP(uniform, low=15, high=100), 'p': IntHP(uniform, low=1, high=5) } #default metric: 'minkowski' return ConfigSpace(name='KNN', hps=hps)
def cs_impl(cls, config_spaces): hps = [ CatHP('configs', cls.sampling_function, config_spaces=config_spaces[0]), CatHP('reduce', cls.sampling_function, config_spaces=config_spaces[1]) ] return ConfigSpace(name=cls.__name__, hps=hps)
def cs_impl(cls): hps = { 'n_neighbors': IntHP(uniform, low=2, high=1000), 'weights': CatHP(choice, a=['uniform', 'distance']), 'algorithm': CatHP(choice, a=['auto', 'ball_tree', 'kd_tree', 'brute']), 'leaf_size': IntHP(uniform, low=2, high=1000), 'p': IntHP(uniform, low=1, high=6) } return ConfigSpace(name=cls.__name__, hps=hps)
def cs_impl(cls): hps = { 'C': RealHP(uniform, low=0.0, high=10000.0), 'kernel': CatHP(choice, a=['linear', 'poly', 'rbf', 'sigmoid']), 'degree': IntHP(uniform, low=0, high=1000), 'gamma': CatHP(choice, a=['scale', 'auto']), 'coef0': RealHP(uniform, low=0.0, high=1000.0), 'shrinking': CatHP(choice, a=[True, False]), 'probability': CatHP(choice, a=[True, False]), 'tol': RealHP(uniform, low=1e-6, high=0.5), 'max_iter': IntHP(uniform, low=-1, max=10000), 'decision_function_shape': CatHP(choice, a=['ovo', 'ovr']) } return ConfigSpace(name=cls.__name__, hps=hps)
def cs_impl(cls, data=None): hps = { 'sampling_strategy': CatHP(choice, items=['majority', 'not minority', 'not majority', 'all']) } return ConfigSpace(name=cls.__name__, hps=hps)
def cs_impl(cls): # Sw # cs = ConfigSpace('Switch') # st = cs.start() # st.add_children([a.start, b.start, c.start]) # cs.finish([a.end,b.end,c.end]) hps = { 'criterion': CatHP(choice, a=['gini', 'entropy']), 'splitter': CatHP(choice, a=['best']), 'class_weight': CatHP(choice, a=[None, 'balanced']), 'max_features': CatHP(choice, a=['auto', 'sqrt', 'log2', None]), 'max_depth': IntHP(uniform, low=2, high=1000), 'min_samples_split': RealHP(uniform, low=1e-6, high=0.3), 'min_samples_leaf': RealHP(uniform, low=1e-6, high=0.3), 'min_weight_fraction_leaf': RealHP(uniform, low=0.0, high=0.3), 'min_impurity_decrease': RealHP(uniform, low=0.0, high=0.2) } return ConfigSpace(name='DT', hps=hps)
def cs_impl(cls): hps = { 'sampling_strategy': CatHP(choice, items=[ 'not minority', 'not majority', 'all', 'minority', 'auto' ]), 'k_neighbours': IntHP(uniform, low=2, high=1000) } return ConfigSpace(name=cls.__name__, hps=hps)
def cs_impl(cls): hps = { 'n_estimators': IntHP(uniform, low=2, high=1000), 'criterion': CatHP(choice, a=['mse', 'mae', 'friedman_mse']), 'max_features': CatHP(choice, a=['auto', 'sqrt', 'log2', None]), 'max_depth': IntHP(uniform, low=2, high=100), 'min_samples_split': RealHP(uniform, low=1e-6, high=0.5), 'min_samples_leaf': RealHP(uniform, low=1e-6, high=0.5), 'min_weight_fraction_leaf': RealHP(uniform, low=0.0, high=0.5), 'min_impurity_decrease': RealHP(uniform, low=0.0, high=0.2), 'loss': CatHP(choice, a=['ls', 'lad', 'huber', 'quantile']), 'learning_rate': RealHP(uniform, low=1e-4, high=1e-1), 'subsample': RealHP(uniform, low=0.1, high=0.9), 'alpha': RealHP(uniform, low=0.1, high=0.9), #ignored if loss != huber or quantile 'validation_fraction': RealHP(uniform, low=0.1, high=0.9), # Using Early Stopping # 'n_iter_no_change': IntHP(uniform, low=5, high=20) # # } return ConfigSpace(name='GB', hps=hps)
def cs_impl(cls): hps = {'function': CatHP(choice, items=['mean'])} return ConfigSpace(name=cls.__name__, hps=hps)
def cs_impl(cls, config_spaces): hps = {'configs': CatHP(cls.sampling_function, config_spaces=config_spaces)} return ConfigSpace(name=cls.__name__, hps=hps)
def cs_impl(cls, data=None): hps = { '@with_mean/std': CatHP(choice, items=[(True, False), (False, True), (True, True)]) } return ConfigSpace(name=cls.__name__, hps=hps)
def cs_impl(cls): hps = {'@nb_type': CatHP(choice, items=['GaussianNB', 'BernoulliNB'])} return ConfigSpace(name='NB', hps=hps)
def cs_impl(cls): # TODO: cirar funcao no data hps = {'field': CatHP(choice, items=['X', 'Y', 'Z'])} return ConfigSpace(name=cls.__name__, hps=hps)
def cs_impl(self): hps = { '@nb_type': CatHP(choice, items=["MultinomialNB", "ComplementNB"]) } return ConfigSpace(name='NB', hps=hps)
def cs_impl(cls): # TODO: cirar funcao no data hps = [CatHP('field', choice, itens=['X', 'Y', 'Z'])] return ConfigSpace(name=cls.__name__, hps=hps)
def cs_impl(cls): hps = {'feature_range': CatHP(choice, items=[(-1, 1), (0, 1)])} return ConfigSpace(name=cls.__name__, hps=hps)