Пример #1
0
def evaluate_solution(still_x, still_y, still_z, still_n, calibration_parameters):
    """ Calculates the RMSE of the input XYZ signal if calibrated according to input calibration parameters"""

    # Temporarily adjust the channels of still data, which has collapsed x,y,z values
    do_calibration(still_x, still_y, still_z, calibration_parameters)

    # Get the VM of the calibrated channel
    vm = channel_inference.infer_vector_magnitude(still_x, still_y, still_z)

    # se = sum error
    se = 0.0

    for vm_val,n in zip(vm.data, still_n.data):
        se += (abs(1.0 - vm_val)**2)*n

    rmse = math.sqrt(se / len(vm.data))

    # Undo the temporary calibration
    undo_calibration(still_x, still_y, still_z, calibration_parameters)

    return rmse
Пример #2
0
from datetime import datetime, date, time, timedelta
from pampro import data_loading, Time_Series, Channel, channel_inference, triaxial_calibration

# Change filenames as appropriate

# Read the data - yields 1 channel per axis
ts, header = data_loading.load("/pa/data/BIOBANK/example.cwa", "Axivity")

x, y, z = ts.get_channels(["X", "Y", "Z"])

# Autocalibrate the raw acceleration data
x, y, z, calibration_diagnostics = triaxial_calibration.calibrate(x, y, z)

# Infer some sample level information - Vector Magnitude (VM), Euclidean Norm Minus One (ENMO)
vm = channel_inference.infer_vector_magnitude(x, y, z)
enmo = channel_inference.infer_enmo(vm)

# Create a time series object and add channels to it
ts.add_channels([vm, enmo])

# Uncomment this line to write the raw data as CSV
#ts.write_channels_to_file("C:/Data/3.csv")

# Request some interesting statistics - mean of ENMO
stats = {"ENMO":[("generic", ["mean"])]}

# Get the above statistics on an hourly level - returned as channels
hourly_results = ts.piecewise_statistics(timedelta(hours=1), statistics=stats)

# Write the hourly analysis to a file
from datetime import datetime, date, time, timedelta
from pampro import Time_Series, Channel, channel_inference, triaxial_calibration

# Change the filenames as appropriate

# Load sample activPAL data
x, y, z = Channel.load_channels(
    "/pa/data/STVS/_data/activpal_data/714952C-AP1335893 18Nov13 10-00am for 7d 23h 14m.datx",
    "activPAL")

# Autocalibrate the raw acceleration data
x, y, z, (cal_params), (results), (misc) = triaxial_calibration.calibrate(
    x, y, z)

# Infer some sample level info from the three channels - VM, ENMO, Pitch & Roll
vm = channel_inference.infer_vector_magnitude(x, y, z)
enmo = channel_inference.infer_enmo(vm)
pitch, roll = channel_inference.infer_pitch_roll(x, y, z)

# Create a time series object and add all signals to it
ts = Time_Series.Time_Series("activPAL")
ts.add_channels([x, y, z, vm, enmo, pitch, roll])

# Request some stats about the time series
# In this case: mean ENMO, pitch and roll, and 10 degree cutpoints of pitch and roll
angle_levels = [[-90, -80], [-80, -70], [-70, -60], [-60, -50], [-50, -40],
                [-40, -30], [-30, -20], [-20, -10], [-10, 0], [0, 10],
                [10, 20], [20, 30], [30, 40], [40, 50], [50, 60], [60, 70],
                [70, 80], [80, 90]]
stat_dict = {
    "Pitch": angle_levels + ["mean"],
Пример #4
0
def qc_analysis(job_details):

    id_num = str(job_details["pid"])
    filename = job_details["filename"]

    filename_short = os.path.basename(filename).split('.')[0]

    battery_max = 0
    if filetype == "GeneActiv":
        battery_max = GA_battery_max
    elif filetype == "Axivity":
        battery_max = AX_battery_max

    # Load the data from the hdf5 file
    ts, header = data_loading.fast_load(filename, filetype)

    header["QC_filename"] = os.path.basename(filename)

    x, y, z, battery, temperature = ts.get_channels(["X", "Y", "Z", "Battery", "Temperature"])
    
    # create a channel of battery percentage, based on the assumed battery maximum value 
    battery_pct = Channel.Channel.clone(battery)
    battery_pct.data = (battery.data / battery_max) * 100
    
    channels = [x, y, z, battery, temperature, battery_pct]
    
    anomalies = diagnostics.diagnose_fix_anomalies(channels, discrepancy_threshold=2)

    # create dictionary of anomalies types
    anomalies_dict = dict()
                        
    # check whether any anomalies have been found:
    if len(anomalies) > 0:
        anomalies_file = os.path.join(anomalies_folder, "{}_anomalies.csv".format(filename_short))
        df = pd.DataFrame(anomalies)
        
        for type in anomaly_types:
            anomalies_dict["QC_anomaly_{}".format(type)] = (df.anomaly_type.values == type).sum()
        
        df = df.set_index("anomaly_type")
        # print record of anomalies to anomalies_file
        df.to_csv(anomalies_file)
        
    else:
        for type in anomaly_types:
            anomalies_dict["QC_anomaly_{}".format(type)] = 0
        
    # check for axis anomalies
    axes_dict = diagnostics.diagnose_axes(x, y, z, noise_cutoff_mg=13)
    
    axis_anomaly = False
    
    for key, val in axes_dict.items():
        anomalies_dict["QC_{}".format(key)] = val
        if key.endswith("max"):
            if val > axis_max:
                axis_anomaly = True
        elif key.endswith("min"):
            if val < axis_min:
                axis_anomaly = True

    # create a "check battery" flag:
    check_battery = False

    # calculate first and last battery percentages
    first_battery_pct = round((battery_pct.data[1]),2)
    last_battery_pct = round((battery_pct.data[-1]),2)
    header["QC_first_battery_pct"] = first_battery_pct
    header["QC_last_battery_pct"] = last_battery_pct
    
    # calculate lowest battery percentage
    # check if battery.pct has a missing_value, exclude those values if they exist
    if battery_pct.missing_value == "None":
        lowest_battery_pct = min(battery_pct.data)
    else:
        test_array = np.delete(battery_pct.data, np.where(battery_pct.data == battery_pct.missing_value))
        lowest_battery_pct = min(test_array)
    
    header["QC_lowest_battery_pct"] = round(lowest_battery_pct,2)
    header["QC_lowest_battery_threshold"] = battery_minimum
        
    # find the maximum battery discharge in any 24hr period:    
    max_discharge = battery_pct.channel_max_decrease(time_period=timedelta(hours=discharge_hours))
    header["QC_max_discharge"] = round(max_discharge, 2)
    header["QC_discharge_time_period"] = "{} hours".format(discharge_hours)
    header["QC_discharge_threshold"] = discharge_pct

    # change flag if lowest battery percentage dips below battery_minimum at any point 
    # OR maximum discharge greater than discharge_pct over time period "hours = discharge_hours"
    if lowest_battery_pct < battery_minimum or max_discharge > discharge_pct:
        check_battery = True
        
    header["QC_check_battery"] = str(check_battery)
    header["QC_axis_anomaly"] = str(axis_anomaly)

    # Calculate the time frame to use
    start = time_utilities.start_of_day(x.timeframe[0])
    end = time_utilities.end_of_day(x.timeframe[-1])
    tp = (start, end)

    results_ts = Time_Series.Time_Series("")

    # Derive some signal features
    vm = channel_inference.infer_vector_magnitude(x, y, z)
    enmo = channel_inference.infer_enmo(vm)
    enmo.minimum = 0
    enmo.maximum = enmo_max

    # Infer nonwear
    nonwear_bouts = channel_inference.infer_nonwear_for_qc(x, y, z, noise_cutoff_mg=noise_cutoff_mg)
    # Use nonwear bouts to calculate wear bouts
    wear_bouts = Bout.time_period_minus_bouts(enmo.timeframe, nonwear_bouts)

    # Use wear bouts to calculate the amount of wear time in the file in hours, save to meta data
    total_wear = Bout.total_time(wear_bouts)
    total_seconds_wear = total_wear.total_seconds()
    total_hours_wear = round(total_seconds_wear/3600)
    header["QC_total_hours_wear"] = total_hours_wear

    # Split the enmo channel into lists of bouts for each quadrant:
    ''' quadrant_0 = 00:00 -> 06: 00
        quadrant_1 = 06:00 -> 12: 00
        quadrant_2 = 12:00 -> 18: 00
        quadrant_3 = 18:00 -> 00: 00 '''
    q_0, q_1, q_2, q_3 = channel_inference.create_quadrant_bouts(enmo)

    # calculate the intersection of each set of bouts with wear_bouts, then calculate the wear time in each quadrant.
    sum_quadrant_wear = 0
    for quadrant, name1, name2 in ([q_0, "QC_hours_wear_quadrant_0", "QC_pct_wear_quadrant_0"],
                                   [q_1, "QC_hours_wear_quadrant_1", "QC_pct_wear_quadrant_1"],
                                   [q_2, "QC_hours_wear_quadrant_2", "QC_pct_wear_quadrant_2"],
                                   [q_3, "QC_hours_wear_quadrant_3", "QC_pct_wear_quadrant_3"]):
        quadrant_wear = Bout.bout_list_intersection(quadrant, wear_bouts)
        seconds_wear = Bout.total_time(quadrant_wear).total_seconds()
        hours_wear = round(seconds_wear / 3600)
        header[name1] = hours_wear
        header[name2] = round(((hours_wear / total_hours_wear) * 100), 2)

    for bout in nonwear_bouts:
        # Show non-wear bouts in purple
        bout.draw_properties = {'lw': 0, 'alpha': 0.75, 'facecolor': '#764af9'}

    for channel, channel_name in zip([enmo, battery_pct],["ENMO", "Battery_percentage"]):
        channel.name = channel_name
        results_ts.add_channel(channel)

    if PLOT == "YES":    
        # Plot statistics as subplots in one plot file per data file
        results_ts["ENMO"].add_annotations(nonwear_bouts)
        results_ts.draw_qc(plotting_df, file_target=os.path.join(charts_folder,"{}_plots.png".format(filename_short)))

    header["QC_script"] = version
    
    # file of metadata from qc process
    qc_output = os.path.join(results_folder, "qc_meta_{}.csv".format(filename_short))
    # check if qc_output already exists...
    if os.path.isfile(qc_output):
        os.remove(qc_output)
    
    metadata = {**header, **anomalies_dict}
    
    # write metadata to file
    pampro_utilities.dict_write(qc_output, id_num, metadata)

    for c in ts:
        del c.data
        del c.timestamps
        del c.indices
        del c.cached_indices
Пример #5
0
def process_file(job_details):

    id_num = str(job_details["pid"])
    filename = job_details["filename"]

    filename_short = os.path.basename(filename).split('.')[0]

    meta = os.path.join(results_folder,
                        "metadata_{}.csv".format(filename_short))
    # check if analysis_meta already exists...
    if os.path.isfile(meta):
        os.remove(meta)

    battery_max = 0
    if monitor_type == "GeneActiv":
        battery_max = GA_battery_max
    elif monitor_type == "Axivity":
        battery_max = AX_battery_max

    epochs = [timedelta(minutes=n) for n in epoch_minutes]
    # Use 'epochs_minutes' variable to create the corresponding names to the epochs defined
    names = []
    plots_list = []
    for n in epoch_minutes:
        name = ""
        if n % 60 == 0:  # If the epoch is a multiple of 60, it will be named in hours, e.g. '1h'
            name = "{}h".format(int(n / 60))
        elif n % 60 != 0:  # If the epoch is NOT a multiple of 60, it will be named in seconds, e.g. '15m'
            name = "{}m".format(n)
        names.append(name)
        if n in epoch_plot:
            plots_list.append(name)

    # fast-load the data to identify any anomalies:
    qc_ts, qc_header = data_loading.fast_load(filename, monitor_type)

    qc_channels = qc_ts.get_channels(["X", "Y", "Z"])

    anomalies = diagnostics.diagnose_fix_anomalies(qc_channels,
                                                   discrepancy_threshold=2)

    # Load the data
    ts, header = data_loading.load(filename, monitor_type, compress=False)
    header["processed_file"] = os.path.basename(filename)

    # some monitors have manufacturers parameters applied to them, let's preserve these but rename them:
    var_list = [
        "x_gain", "x_offset", "y_gain", "y_offset", "z_gain", "z_offset",
        "calibration_date"
    ]
    for var in var_list:
        if var in header.keys():
            header[("manufacturers_%s" % var)] = header[var]
            header.pop(var)

    x, y, z, battery, temperature, integrity = ts.get_channels(
        ["X", "Y", "Z", "Battery", "Temperature", "Integrity"])
    initial_channels = [x, y, z, battery, temperature, integrity]

    # create dictionary of anomalies total and types
    anomalies_dict = {"QC_anomalies_total": len(anomalies)}

    # check whether any anomalies have been found:
    if len(anomalies) > 0:
        anomalies_file = os.path.join(
            results_folder, "{}_anomalies.csv".format(filename_short))
        df = pd.DataFrame(anomalies)

        for type in anomaly_types:
            anomalies_dict["QC_anomaly_{}".format(type)] = (
                df.anomaly_type.values == type).sum()

        df = df.set_index("anomaly_type")
        # print record of anomalies to anomalies_file
        df.to_csv(anomalies_file)

        # if anomalies have been found, fix these anomalies
        channels = diagnostics.fix_anomalies(anomalies, initial_channels)

    else:
        for type in anomaly_types:
            anomalies_dict["QC_anomaly_{}".format(type)] = 0
        # if no anomalies
        channels = initial_channels

    first_channel = channels[0]
    # Convert timestamps to offsets from the first timestamp
    start, offsets = Channel.timestamps_to_offsets(first_channel.timestamps)

    # As timestamps are sparse, expand them to 1 per observation
    offsets = Channel.interpolate_offsets(offsets, len(first_channel.data))

    # For each channel, convert to offset timestamps
    for c in channels:
        c.start = start
        c.set_contents(c.data, offsets, timestamp_policy="offset")

    # find approximate first and last battery percentage values
    first_battery_pct = round((battery.data[1] / battery_max) * 100, 2)
    last_battery_pct = round((battery.data[-1] / battery_max) * 100, 2)

    # Calculate the time frame to use
    start = time_utilities.start_of_day(x.timeframe[0])
    end = time_utilities.end_of_day(x.timeframe[-1])
    tp = (start, end)

    # if the sampling frequency is greater than 40Hz
    if x.frequency > 40:
        # apply a low pass filter
        x = pampro_fourier.low_pass_filter(x,
                                           20,
                                           frequency=x.frequency,
                                           order=4)
        x.name = "X"  # because LPF^ changes the name, we want to override that
        y = pampro_fourier.low_pass_filter(y,
                                           20,
                                           frequency=y.frequency,
                                           order=4)
        y.name = "Y"
        z = pampro_fourier.low_pass_filter(z,
                                           20,
                                           frequency=z.frequency,
                                           order=4)
        z.name = "Z"

    # find any bouts where data is "missing" BEFORE calibration
    missing_bouts = []
    if -111 in x.data:
        # extract the bouts of the data channels where the data == -111 (the missing value)
        missing = x.bouts(-111, -111)

        # add a buffer of 2 minutes (120 seconds) to the beginning and end of each bout
        for item in missing:

            bout_start = max(item.start_timestamp - timedelta(seconds=120),
                             x.timeframe[0])
            bout_end = min(item.end_timestamp + timedelta(seconds=120),
                           x.timeframe[1])

            new_bout = Bout.Bout(start_timestamp=bout_start,
                                 end_timestamp=bout_end)
            missing_bouts.append(new_bout)

    else:
        pass

    x.delete_windows(missing_bouts)
    y.delete_windows(missing_bouts)
    z.delete_windows(missing_bouts)
    integrity.fill_windows(missing_bouts, fill_value=1)

    ################ CALIBRATION #######################

    # extract still bouts
    calibration_ts, calibration_header = triaxial_calibration.calibrate_stepone(
        x, y, z, noise_cutoff_mg=noise_cutoff_mg)
    # Calibrate the acceleration to local gravity
    cal_diagnostics = triaxial_calibration.calibrate_steptwo(
        calibration_ts, calibration_header, calibration_statistics=False)

    # calibrate data
    triaxial_calibration.do_calibration(x,
                                        y,
                                        z,
                                        temperature=None,
                                        cp=cal_diagnostics)

    x.delete_windows(missing_bouts)
    y.delete_windows(missing_bouts)
    z.delete_windows(missing_bouts)
    temperature.delete_windows(missing_bouts)
    battery.delete_windows(missing_bouts)

    # Derive some signal features
    vm = channel_inference.infer_vector_magnitude(x, y, z)
    vm.delete_windows(missing_bouts)

    if "HPFVM" in stats:
        vm_hpf = channel_inference.infer_vm_hpf(vm)
    else:
        vm_hpf = None

    if "ENMO" in stats:
        enmo = channel_inference.infer_enmo(vm)
    else:
        enmo = None

    if "PITCH" and "ROLL" in stats:
        pitch, roll = channel_inference.infer_pitch_roll(x, y, z)
    else:
        pitch = roll = None

    # Infer nonwear and mask those data points in the signal
    nonwear_bouts = channel_inference.infer_nonwear_triaxial(
        x, y, z, noise_cutoff_mg=noise_cutoff_mg)
    for bout in nonwear_bouts:
        # Show non-wear bouts in purple
        bout.draw_properties = {'lw': 0, 'alpha': 0.75, 'facecolor': '#764af9'}

    for channel, channel_name in zip(
        [enmo, vm_hpf, pitch, roll, temperature, battery],
        ["ENMO", "HPFVM", "PITCH", "ROLL", "Temperature", "Battery"]):
        if channel_name in stats:
            # Collapse the sample data to a processing epoch (in seconds) so data is summarised
            epoch_level_channel = channel.piecewise_statistics(
                timedelta(seconds=processing_epoch), time_period=tp)[0]
            epoch_level_channel.name = channel_name
            if channel_name in ["Temperature", "Battery"]:
                pass
            else:
                epoch_level_channel.delete_windows(nonwear_bouts)
            epoch_level_channel.delete_windows(missing_bouts)
            ts.add_channel(epoch_level_channel)

        # collapse binary integrity channel
        epoch_level_channel = integrity.piecewise_statistics(
            timedelta(seconds=int(processing_epoch)),
            statistics=[("binary", ["flag"])],
            time_period=tp)[0]
        epoch_level_channel.name = "Integrity"
        epoch_level_channel.fill_windows(missing_bouts, fill_value=1)
        ts.add_channel(epoch_level_channel)

    # create and open results files
    results_files = [
        os.path.join(results_folder, "{}_{}.csv".format(name, filename_short))
        for name in names
    ]
    files = [open(file, "w") for file in results_files]

    # Write the column headers to the created files
    for f in files:
        f.write(pampro_utilities.design_file_header(stats) + "\n")

    # writing out and plotting results
    for epoch, name, f in zip(epochs, names, files):
        results_ts = ts.piecewise_statistics(epoch,
                                             statistics=stats,
                                             time_period=tp,
                                             name=id_num)
        results_ts.write_channels_to_file(file_target=f)
        f.flush()
        if name in plots_list:
            # for each statistic in the plotting dictionary, produce a plot in the results folder
            for stat, plot in plotting_dict.items():
                try:
                    results_ts[stat].add_annotations(nonwear_bouts)
                    results_ts.draw([[stat]],
                                    file_target=os.path.join(
                                        results_folder,
                                        plot.format(filename_short, name)))
                except KeyError:
                    pass

    header["processing_script"] = version
    header["analysis_resolutions"] = names
    header["noise_cutoff_mg"] = noise_cutoff_mg
    header["processing_epoch"] = processing_epoch
    header["QC_first_battery_pct"] = first_battery_pct
    header["QC_last_battery_pct"] = last_battery_pct

    metadata = {**header, **anomalies_dict, **cal_diagnostics}

    # write metadata to file
    pampro_utilities.dict_write(meta, id_num, metadata)

    for c in ts:
        del c.data
        del c.timestamps
        del c.indices
        del c.cached_indices
Пример #6
0
def calibrate(x,y,z, allow_overwrite=True, budget=1000, noise_cutoff_mg=13):
    """ Use still bouts in the given triaxial data to calibrate it and return the calibrated channels """

    calibration_diagnostics = OrderedDict()

    vm = channel_inference.infer_vector_magnitude(x,y,z)

    # Get a list of bouts where standard deviation in each axis is below given threshold ("still")
    still_bouts = channel_inference.infer_still_bouts_triaxial(x,y,z, noise_cutoff_mg=noise_cutoff_mg, minimum_length=timedelta(minutes=1))
    num_still_bouts = len(still_bouts)
    num_still_seconds = Bout.total_time(still_bouts).total_seconds()

    # Summarise VM in 10s intervals
    vm_windows = vm.piecewise_statistics(timedelta(seconds=10), [("generic", ["mean"])], time_period=vm.timeframe)[0]

    # Get a list where VM was between 0.5 and 1.5g ("reasonable")
    reasonable_bouts = vm_windows.bouts(0.5, 1.5)
    num_reasonable_bouts = len(reasonable_bouts)
    num_reasonable_seconds = Bout.total_time(reasonable_bouts).total_seconds()

    # We only want still bouts where the VM level was within 0.5g of 1g
    # Therefore insersect "still" time with "reasonable" time
    still_bouts = Bout.bout_list_intersection(reasonable_bouts, still_bouts)

    # And we only want bouts where it was still and reasonable for 10s or longer
    still_bouts = Bout.limit_to_lengths(still_bouts, min_length = timedelta(seconds=10))
    num_final_bouts = len(still_bouts)
    num_final_seconds = Bout.total_time(still_bouts).total_seconds()

    # Get the average X,Y,Z for each still bout (inside which, by definition, XYZ should not change)
    still_x, num_samples = x.build_statistics_channels(still_bouts, [("generic", ["mean", "n"])])
    still_y = y.build_statistics_channels(still_bouts, [("generic", ["mean"])])[0]
    still_z = z.build_statistics_channels(still_bouts, [("generic", ["mean"])])[0]

    # Get the octant positions of the points to calibrate on
    occupancy = octant_occupancy(still_x.data, still_y.data, still_z.data)

    # Are they fairly distributed?
    comparisons = {"x<0":[0,1,2,3], "x>0":[4,5,6,7], "y<0":[0,1,4,5], "y>0":[2,3,6,7], "z<0":[0,2,4,6], "z>0":[1,3,5,7]}
    for axis in ["x", "y", "z"]:
        mt = sum(occupancy[comparisons[axis + ">0"]])
        lt = sum(occupancy[comparisons[axis + "<0"]])
        calibration_diagnostics[axis + "_inequality"] = abs(mt-lt)/sum(occupancy)

    # Calculate the initial error without doing any calibration
    start_error = evaluate_solution(still_x, still_y, still_z, num_samples, [0,1,0,1,0,1])

    # Do offset and scale calibration by default
    offset_only_calibration = False
    calibration_diagnostics["calibration_method"] = "offset and scale"

    # If we have less than 500 points to calibrate with, or if more than 2 octants are empty
    if len(still_x.data) < 500 or sum(occupancy == 0) > 2:
        offset_only_calibration = True
        calibration_diagnostics["calibration_method"] = "offset only"


    # Search for the correct way to calibrate the data
    calibration_parameters = find_calibration_parameters(still_x.data, still_y.data, still_z.data, offset_only=offset_only_calibration)

    for param,value in zip("x_offset,x_scale,y_offset,y_scale,z_offset,z_scale".split(","), calibration_parameters):
        calibration_diagnostics[param] = value

    for i,occ in enumerate(occupancy):
        calibration_diagnostics["octant_"+str(i)] = occ

    # Calculate the final error after calibration
    end_error = evaluate_solution(still_x, still_y, still_z, num_samples, calibration_parameters)

    calibration_diagnostics["start_error"] = start_error
    calibration_diagnostics["end_error"] = end_error
    calibration_diagnostics["num_final_bouts"] = num_final_bouts
    calibration_diagnostics["num_final_seconds"] = num_final_seconds
    calibration_diagnostics["num_still_bouts"] = num_still_bouts
    calibration_diagnostics["num_still_seconds"] = num_still_seconds
    calibration_diagnostics["num_reasonable_bouts"] = num_reasonable_bouts
    calibration_diagnostics["num_reasonable_seconds"] = num_reasonable_seconds

    if allow_overwrite:
        # If we do not need to preserve the original x,y,z values, we can just calibrate that data

        # Apply the best calibration factors to the data
        do_calibration(x, y, z, calibration_parameters)

        return (x, y, z, calibration_diagnostics)

    else:
        # Else we create an independent copy of the raw data and calibrate that instead
        cal_x = copy.deepcopy(x)
        cal_y = copy.deepcopy(y)
        cal_z = copy.deepcopy(z)

        # Apply the best calibration factors to the data
        do_calibration(cal_x, cal_y, cal_z, calibration_parameters)

        return (cal_x, cal_y, cal_z, calibration_diagnostics)