Пример #1
0
def from_pickle(filename, convert=True):
    """
    Load a pandapower format Network from pickle file

    INPUT:
        **filename** (string or file) - The absolute or relative path to the input file or file-like object

        **convert** (bool, True) - If True, converts the format of the net loaded from pickle from the older
            version of pandapower to the newer version format

    OUTPUT:
        **net** (dict) - The pandapower format network

    EXAMPLE:

        >>> net1 = pp.from_pickle(os.path.join("C:", "example_folder", "example1.p")) #absolute path
        >>> net2 = pp.from_pickle("example2.p") #relative path

    """

    net = pandapowerNet(io_utils.get_raw_data_from_pickle(filename))
    io_utils.transform_net_with_df_and_geo(net, ["bus_geodata"],
                                           ["line_geodata"])

    if convert:
        convert_format(net)
    return net
Пример #2
0
def from_pickle(filename, convert=True):
    """
    Load a pandapower format Network from pickle file

    INPUT:
        **filename** (string) - The absolute or relative path to the input file.

    OUTPUT:
        **net** (dict) - The pandapower format network

    EXAMPLE:

        >>> net1 = pp.from_pickle(os.path.join("C:", "example_folder", "example1.p")) #absolute path
        >>> net2 = pp.from_pickle("example2.p") #relative path

    """
    if not os.path.isfile(filename):
        raise UserWarning("File %s does not exist!!" % filename)
    with open(filename, "rb") as f:
        if sys.version_info >= (3, 0):
            net = pickle.load(f,
                              encoding='latin1')  # with encoding in python 3
        else:
            net = pickle.load(f)  # without encoding in python 2
    net = pandapowerNet(net)
    if convert:
        convert_format(net)
    return net
Пример #3
0
def from_pickle(filename, convert=True):
    """
    Load a pandapower format Network from pickle file

    INPUT:
        **filename** (string or file) - The absolute or relative path to the input file or file-like object

    OUTPUT:
        **net** (dict) - The pandapower format network

    EXAMPLE:

        >>> net1 = pp.from_pickle(os.path.join("C:", "example_folder", "example1.p")) #absolute path
        >>> net2 = pp.from_pickle("example2.p") #relative path

    """
    def read(f):
        if sys.version_info >= (3,0):
            return pickle.load(f, encoding='latin1')
        else:
            return pickle.load(f)
    if hasattr(filename, 'read'):
        net = read(filename)
    elif not os.path.isfile(filename):
        raise UserWarning("File %s does not exist!!" % filename)
    else:
        with open(filename, "rb") as f:
            net = read(f)
    net = pandapowerNet(net)
    for key, item in net.items():
        if isinstance(item, dict) and "DF" in item:
            df_dict = item["DF"]
            if "columns" in item["DF"]:
                net[key] = pd.DataFrame(columns=df_dict["columns"],
                                                  index=df_dict["index"],
                                                  data=df_dict["data"])
            else:
                net[key] = pd.DataFrame.from_dict(item["DF"])
                if "columns" in item:
                    net[key] = net[key].reindex_axis(item["columns"], axis=1)
            if "dtypes" in item:
                try:
                    #only works with pandas 0.19 or newer
                    net[key] = net[key].astype(item["dtypes"])
                except:
                    #works with pandas <0.19
                    for column in net[key].columns:
                        net[key][column] = net[key][column].astype(item["dtypes"][column])
    if convert:
        convert_format(net)
    return net
Пример #4
0
def from_pickle(filename, convert=True):
    """
    Load a pandapower format Network from pickle file

    INPUT:
        **filename** (string or file) - The absolute or relative path to the input file or file-like object

    OUTPUT:
        **net** (dict) - The pandapower format network

    EXAMPLE:

        >>> net1 = pp.from_pickle(os.path.join("C:", "example_folder", "example1.p")) #absolute path
        >>> net2 = pp.from_pickle("example2.p") #relative path

    """
    def read(f):
        if sys.version_info >= (3, 0):
            return pickle.load(f, encoding='latin1')
        else:
            return pickle.load(f)

    if hasattr(filename, 'read'):
        net = read(filename)
    elif not os.path.isfile(filename):
        raise UserWarning("File %s does not exist!!" % filename)
    else:
        with open(filename, "rb") as f:
            net = read(f)
    net = pandapowerNet(net)

    try:
        epsg = net.gis_epsg_code
    except AttributeError:
        epsg = None

    for key, item in net.items():
        if isinstance(item, dict) and "DF" in item:
            df_dict = item["DF"]
            if "columns" in df_dict:
                # make sure the index is Int64Index
                try:
                    df_index = pd.Int64Index(df_dict['index'])
                except TypeError:
                    df_index = df_dict['index']
                if GEOPANDAS_INSTALLED and "geometry" in df_dict["columns"] \
                        and epsg is not None:
                    # convert primitive data-types to shapely-objects
                    if key == "bus_geodata":
                        data = {
                            "x": [row[0] for row in df_dict["data"]],
                            "y": [row[1] for row in df_dict["data"]]
                        }
                        geo = [
                            Point(row[2][0], row[2][1])
                            for row in df_dict["data"]
                        ]
                    elif key == "line_geodata":
                        data = {"coords": [row[0] for row in df_dict["data"]]}
                        geo = [LineString(row[1]) for row in df_dict["data"]]

                    net[key] = GeoDataFrame(data,
                                            crs=from_epsg(epsg),
                                            geometry=geo,
                                            index=df_index)
                else:
                    net[key] = pd.DataFrame(columns=df_dict["columns"],
                                            index=df_index,
                                            data=df_dict["data"])
            else:
                # TODO: is this legacy code?
                net[key] = pd.DataFrame.from_dict(df_dict)
                if "columns" in item:
                    try:
                        net[key] = net[key].reindex(item["columns"], axis=1)
                    except TypeError:  # legacy for pandas <0.21
                        net[key] = net[key].reindex_axis(item["columns"],
                                                         axis=1)

            if "dtypes" in item:
                if "columns" in df_dict and "geometry" in df_dict["columns"]:
                    pass
                else:
                    try:
                        # only works with pandas 0.19 or newer
                        net[key] = net[key].astype(item["dtypes"])
                    except:
                        # works with pandas <0.19
                        for column in net[key].columns:
                            net[key][column] = net[key][column].astype(
                                item["dtypes"][column])
    if convert:
        convert_format(net)
    return net