Пример #1
0
def test_equal_eval_name_warning_and_costs():
    net = nw.case5()
    pp.create_pwl_cost(net, 0, "sgen", [[0, 20, 1], [20, 30, 2]])
    pp.create_pwl_cost(net, 0, "gen", [[0, 20, 1], [20, 30, 2]])
    pp.create_pwl_cost(net, 1, "gen", [[0, 20, 1], [20, 30, 2]])
    pp.create_pwl_cost(net, 2, "gen", [[0, 20, 1], [20, 30, 2]])
    df = pd.DataFrame({
        0: [200, 300, 400, 500],
        1: [400, 300, 100, 50],
        2: [100, 300, 200, 100]
    })
    ds = ts.DFData(df.astype(np.float64))
    _ = ct.ConstControl(net,
                        "load",
                        "p_mw",
                        net.load.index,
                        profile_name=net.load.index,
                        data_source=ds)
    ow = ts.OutputWriter(net, output_path=None)
    ow.log_variable("res_sgen", "p_mw", None, np.max, 'warnme')
    ow.log_variable("res_load", "p_mw", None, np.max, 'warnme')
    ow.log_variable("pwl_cost", "points", eval_function=cost_logging)

    ow.remove_log_variable("res_bus", "vm_pu")
    ow.remove_log_variable("res_line", "loading_percent")
    ts.run_timeseries(net, verbose=False)

    p_sgen = ow.output["res_sgen.p_mw"]
    p_load = ow.output["res_load.p_mw"]
    cost = ow.output["pwl_cost.points"]
    assert not np.all(p_sgen.values == p_load.values)
    assert cost.shape == (4, 4)
    assert len(ow.np_results) == 3
def prod_regulee(net, index, df_scale, pmax):
    df = pd.DataFrame()
    df['prod'] = df_scale['scale'].values * pmax
    ds = pt.DFData(df)
    ProdQRegulatedControl(net, gid = index, data_source=ds, pmax = pmax)
    
def def_prod(net, index, df_scale, pmax):
    df = pd.DataFrame()
    df['prod'] = df_scale['scale'].values * pmax
    ds = pt.DFData(df)
    ConstControl(net, element="sgen", variable = 'p_mw', element_index = index, data_source = ds, profile_name="prod")
def def_EV_QReg(net, bus, df, pers):
    ev = pp.create_storage(net, bus, p_mw = 0, max_e_mwh = pers.cap_bat, name = "ev bus"+str(bus), soc_percent=0.5)
    ds = pt.DFData(df)
    EVQRegControl(net, gid = ev, data_source=ds, efficiency = pers.efficiency)
def def_charge(net, index, df_scale, Pmax):
    df = pd.DataFrame()
    df['charge'] = df_scale['scale'].values * Pmax
    ds = pt.DFData(df)
    ConstControl(net, element="load", variable = 'p_mw', element_index = index, data_source = ds, set_q_from_cosphi = False, profile_name="charge")
    return net