Пример #1
0
def test_pm_tnep_cigre_dc():
    # get the grid
    net = cigre_grid()
    # add the possible new lines
    define_possible_new_lines(net)
    # check if max line loading percent is violated (should be)
    pp.runpp(net)
    print("Max line loading prior to optimization:")
    print(net.res_line.loading_percent.max())
    assert np.any(net["res_line"].loc[:, "loading_percent"] >
                  net["line"].loc[:, "max_loading_percent"])

    # run power models tnep optimization
    pp.runpm_tnep(net, pm_solver="juniper", pm_model="DCPPowerModel"
                  )  # gurobi is a better option, but not for travis
    # print the information about the newly built lines
    print("These lines are to be built:")
    print(net["res_ne_line"])

    # set lines to be built in service
    lines_to_built = net["res_ne_line"].loc[net["res_ne_line"].loc[:, "built"],
                                            "built"].index
    net["line"].loc[lines_to_built, "in_service"] = True

    # run a power flow calculation again and check if max_loading percent is still violated
    pp.runpp(net)

    # check max line loading results
    assert not np.any(net["res_line"].loc[:, "loading_percent"] >
                      net["line"].loc[:, "max_loading_percent"])

    print("Max line loading after the optimization:")
    print(net.res_line.loading_percent.max())
Пример #2
0
def test_pm_tnep():
    net = tnep_grid()
    # check if max line loading percent is violated (should be)
    pp.runpp(net)
    assert np.any(net["res_line"].loc[:, "loading_percent"] >
                  net["line"].loc[:, "max_loading_percent"])

    # run power models tnep optimization
    pp.runpm_tnep(net, pm_model="ACPPowerModel")
    # set lines to be built in service
    lines_to_built = net["res_ne_line"].loc[net["res_ne_line"].loc[:, "built"], "built"].index
    net["line"].loc[lines_to_built, "in_service"] = True
    # run a power flow calculation again and check if max_loading percent is still violated
    pp.runpp(net)
    # check max line loading results
    assert not np.any(net["res_line"].loc[:, "loading_percent"] >
                      net["line"].loc[:, "max_loading_percent"])
Пример #3
0
def run_pm_tnep(net, **settings):
    logger.debug("Starting PowerModels.jl TNEP:")
    lines = set()
    # these steps are the decreasing line loading limits so that we get different measures
    # we need this becaus: DCP 80% I_max != DCP 90% I_max
    steps = [.9, .95, 1.]
    step1_sol = []

    # time limits for PowerModels.jl solver
    pm_time_limits = {"pm_time_limit": settings["pm_time_limit"],
                      "pm_nl_time_limit": settings["pm_nl_time_limit"],
                      "pm_mip_time_limit": settings["pm_mip_time_limit"]}

    for step in steps:
        logger.debug(f"starting PowerModels.jl TNEP with with max. line loading {step}")
        # reduce the max. line loading
        net.line.loc[:, "max_loading_percent"] = settings["i_lim"] * step
        net.ne_line.loc[:, "max_loading_percent"] = settings["i_lim"] * step
        try:
            # runs PowerModels.jl TNEP
            pp.runpm_tnep(net, pm_model=settings["model"], pm_solver=settings["solver"], pm_log_level=1,
                          pm_time_limits=pm_time_limits)
        except:
            logger.error("power models failed.")
            continue
        # the PowerModels.jl solution
        sol = net["res_ne_line"].loc[net["res_ne_line"].loc[:, "built"], "built"].index
        if step == 1.:
            # 90% solution of PowerModels (probably not AC feasible)
            step1_sol = sol
        # all lines 'recommended' by the TNEP opt
        lines |= set(list(sol))
    # reset the limits to the original value
    net.ne_line.loc[:, "max_loading_percent"] = settings["i_lim"]
    net.line.loc[:, "max_loading_percent"] = settings["i_lim"]

    if len(step1_sol):
        # check if the best PowerModels.jl solution is good
        check_pm_solution(net, step1_sol)

    return lines, step1_sol