def duplicated(values, keep='first'): """ Return boolean ndarray denoting duplicate values. .. versionadded:: 0.19.0 Parameters ---------- values : ndarray-like Array over which to check for duplicate values. keep : {'first', 'last', False}, default 'first' - ``first`` : Mark duplicates as ``True`` except for the first occurrence. - ``last`` : Mark duplicates as ``True`` except for the last occurrence. - False : Mark all duplicates as ``True``. Returns ------- duplicated : ndarray """ dtype = values.dtype # no need to revert to original type if needs_i8_conversion(dtype): values = values.view(np.int64) elif is_period_arraylike(values): from pandas.tseries.period import PeriodIndex values = PeriodIndex(values).asi8 elif is_categorical_dtype(dtype): values = values.values.codes elif isinstance(values, (ABCSeries, ABCIndex)): values = values.values if is_signed_integer_dtype(dtype): values = _ensure_int64(values) duplicated = htable.duplicated_int64(values, keep=keep) elif is_unsigned_integer_dtype(dtype): values = _ensure_uint64(values) duplicated = htable.duplicated_uint64(values, keep=keep) elif is_float_dtype(dtype): values = _ensure_float64(values) duplicated = htable.duplicated_float64(values, keep=keep) else: values = _ensure_object(values) duplicated = htable.duplicated_object(values, keep=keep) return duplicated
def duplicated(self, keep='first'): from pandas._libs.hashtable import duplicated_int64 codes = self.codes.astype('i8') return duplicated_int64(codes, keep)
def duplicated(self, keep="first"): codes = self.codes.astype("i8") return duplicated_int64(codes, keep)