Пример #1
0
 def save(self, path):
     com.save(self, path)
Пример #2
0
# read in the output of "modvsobs.py"
df1=pd.read_csv(site[0]+'botttemp_mc_mod_mc_obs.csv',index_col=0)
ts1=pd.read_csv(site[0]+'botttemp_mc_obs.csv',index_col=0,names=['yy','mm','dd','count','mean','median','min','max','std','rms'])
dfmean1=df1.mean()
df2=df1['mean'].fillna(0)
dfmean1['max']=max(df2)
dfmean1['min']=min(df2)
dfmean1['std']=ts1['std'].mean()
pdmean1=pd.DataFrame(dfmean1)
pdmean1=pdmean1.drop('median')
pdmean1.columns=[site[0]]

for k in range(len(site)):
    if k!=0:
        #df=pd.read_csv(site[k]+'_wtmp_mc_mod_mc_obs.csv',index_col=0)
        df=pd.read_csv(site[k]+'botttemp_mc_mod_mc_obs.csv',index_col=0)
        ts=pd.read_csv(site[k]+'botttemp_mc_obs.csv',index_col=0,names=['yy','mm','dd','count','mean','median','min','max','std','rms'])
        dfmean=df.mean()
        df3=df['mean'].fillna(0)
        dfmean['max']=max(df3)
        dfmean['min']=min(df3)
        dfmean['std']=ts['std'].mean()
        pdmean=pd.DataFrame(dfmean)
        pdmean=pdmean.drop('median')
        pdmean.columns=[site[k]]
        pdmean1=pdmean1.join(pdmean)
pdmean1=pdmean1.T
pdmean1.to_csv('totalcaculate_10Dec2013.csv',index=True)
htmlmean=pdmean1.to_html(header=True,index=True,float_format=lambda x: '%10.2f' % x)
save(htmlmean,'/net/nwebserver/epd/ocean/MainPage/lob/emoltvsnecofs_diff.html')
#save(htmlmean,'emoltvsnecofs_diff.html')
Пример #3
0
 def save(self, path):
     com.save(self, path)
Пример #4
0
 def save(self, path):
     save(self, path)
Пример #5
0
dfmean2 = df2['mean']
pdmean2 = pd.DataFrame(dfmean2, index=df2.index)

pdmean2.columns = [site2[0]]
for k in range(len(site2)):
    if k != 0:
        df3 = pd.read_csv(site2[k] + 'temp_mc_mod_mc_obs.csv', index_col=0)
        dfmean3 = df3['mean']
        pdmean3 = pd.DataFrame(dfmean3, index=df3.index)
        pdmean3.columns = [site2[k]]
        pdmean2 = pdmean2.join(pdmean3)
print pdmean2

pdmean1.to_csv('totalplot.csv', index=True)
htmlmean = pdmean1.to_html(header=True, index=True)
save(htmlmean, 'totalplot.html')

fig = plt.figure()
ax = fig.add_subplot(211)
#ax.plot(pdmean1.index,pdmean1.values)
ax.plot(pdmean1.index, pdmean1['AG01surf'], color='r')
ax.plot(pdmean1.index, pdmean1['AG01bott'], color='b')
ax.set_ylabel('Temperature difference (degC)')
plt.title('observed minus model at AG01')
plt.grid()
#ax.set_xlabel('Month')
plt.setp(ax.get_xticklabels(), visible=False)
plt.legend(['surface', 'bottom'],
           loc='upper right',
           ncol=3,
           fancybox=True,
Пример #6
0
dfmean1['std'] = ts1['std'].mean()
pdmean1 = pd.DataFrame(dfmean1)
pdmean1 = pdmean1.drop('median')
pdmean1.columns = [site[0]]

for k in range(len(site)):
    if k != 0:
        df = pd.read_csv(site[k] + 'botttemp_mc_mod_mc_obs.csv', index_col=0)
        ts = pd.read_csv(site[k] + 'botttemp_mc_obs.csv',
                         index_col=0,
                         names=[
                             'yy', 'mm', 'dd', 'count', 'mean', 'median',
                             'min', 'max', 'std'
                         ])
        dfmean = df.mean()
        df3 = df['mean'].fillna(0)
        dfmean['max'] = max(df3)
        dfmean['min'] = min(df3)
        dfmean['std'] = ts['std'].mean()
        pdmean = pd.DataFrame(dfmean)
        pdmean = pdmean.drop('median')
        pdmean.columns = [site[k]]
        pdmean1 = pdmean1.join(pdmean)
pdmean1 = pdmean1.T
pdmean1.to_csv('totalcaculate.csv', index=True)
htmlmean = pdmean1.to_html(header=True,
                           index=True,
                           float_format=lambda x: '%10.2f' % x)
save(htmlmean,
     '/net/nwebserver/epd/ocean/MainPage/lob/emoltvsnecofs_diff.html')
save(htmlmean, 'emoltvsnecofs_diff.html')
Пример #7
0
pdmean2=pd.DataFrame(dfmean2,index=df2.index)

pdmean2.columns=[site2[0]]
for k in range(len(site2)):
    if k!=0:
        df3=pd.read_csv(site2[k]+'temp_mc_mod_mc_obs.csv',index_col=0)
        dfmean3=df3['mean']
        pdmean3=pd.DataFrame(dfmean3,index=df3.index)
        pdmean3.columns=[site2[k]]
        pdmean2=pdmean2.join(pdmean3)
print pdmean2


pdmean1.to_csv('totalplot.csv',index=True)
htmlmean=pdmean1.to_html(header=True,index=True)
save(htmlmean,'totalplot.html')

fig=plt.figure()
ax=fig.add_subplot(211)
#ax.plot(pdmean1.index,pdmean1.values)
ax.plot(pdmean1.index,pdmean1['AG01surf'],color='r')
ax.plot(pdmean1.index,pdmean1['AG01bott'],color='b')
ax.set_ylabel('Temperature difference (degC)')
plt.title('observed minus model at AG01')
plt.grid()
#ax.set_xlabel('Month')
plt.setp(ax.get_xticklabels(),visible=False)
plt.legend(['surface','bottom'],loc='upper right',
          ncol=3, fancybox=True, shadow=True)

for i in range(len(ax.lines)):#plot in different ways
Пример #8
0
 def save(self, path):
     save(self, path)
Пример #9
0
    tmi=tsdc['min'].resample('m',how=['mean'],loffset=timedelta(days=-15)).values
    tma=tsdc['max'].resample('m',how=['mean'],loffset=timedelta(days=-15)).values
    tstd=tsdc['std'].resample('m',how=['mean'],loffset=timedelta(days=-15)).values
    for kk in range(len(tsmc)):
       tsmc['count'].values[kk]=tcount[kk]
       tsmc['min'].values[kk]=tmi[kk]
       tsmc['max'].values[kk]=tma[kk]
       tsmc['std'].values[kk]=tstd[kk]
    tsmc['yy']=0
    tsmc['mm']=tsmc.index.month
    tsmc['dd']=0
    output_fmt=['yy','mm','dd','count','mean','median','min','max','std']
    tsmcp=tsmc.reindex(columns=output_fmt)# found I needed to generate a new dataframe to print in this order
    tsmcp.to_csv(outdir+site[k]+'_wtmp_mc_'+str(int(depth))+'.csv',index=False,header=False,na_rep='NaN',float_format='%10.2f')
    output_fmt_html=['mm','count','mean','median','min','max','std']
    outhtml=tsmcp.to_html(header=True,index=False,na_rep='NaN',float_format=lambda x: '%10.2f' % x,columns=output_fmt_html)
    save(outhtml,'/net/home3/ocn/jmanning/py/'+site[k]+'_wtmp_mc_'+str(int(depth))+'.html')
    #make some plots
    plt.figure()
    tsod['mean'].plot() #plot daily mean
    plt.title(site[k]+' daily means')
    plt.show()
    plt.savefig('/net/nwebserver/epd/ocean/MainPage/lob/'+site[k]+'_jt.png')
    plt.figure()
    tt=tsmc['mean'].plot() #plot mthly clim
    tt.xaxis.set_major_formatter(DateFormatter('%b'))
    plt.title(site[k]+' Monthly Climatology')
    plt.show()
    plt.savefig('/net/nwebserver/epd/ocean/MainPage/lob/'+site[k]+'_seacycle.png')
  
Пример #10
0
# DO THE SAME AS ABOVE FOR MULTIPLE SITES
for k in range(len(site)):
    print site[k]
    #if (k!=0) and (os.path.isfile("/net/data5/jmanning/modvsobs/roms/"+site[k]+'botttemp_mc_mod_mc_obs.csv')):
    if (k!=0) and (os.path.isfile("/net/data5/jmanning/modvsobs/"+site[k]+'botttemp_mc_mod_mc_obs'+mode+'.csv')):
        df=pd.read_csv("/net/data5/jmanning/modvsobs/"+site[k]+'botttemp_mc_mod_mc_obs'+mode+'.csv',index_col=0)
        dfmean=df.mean().dropna()
        dfmean['max']=np.nanmax(df['mean'])
        dfmean['min']=np.nanmin(df['mean'])
        if len(dfmean)>4: # cases where there is std
           dfmean=dfmean.drop('std')
        dfmean=dfmean.drop('median')
        std=df['mean'].std()
        rms=sqrt((np.sum(np.square(df['mean'])))/(np.count_nonzero(df['mean'])))
        row= pd.DataFrame([dict(rms=rms,std=std)])
        row=row.T
        pdmean=pd.DataFrame(dfmean)
        pdmean=pdmean.append(row)
        #pdmean=pdmean.drop('median')
        pdmean.columns=[site[k]]
        pdmean1=pdmean1.join(pdmean)
pdmean1=pdmean1.T
#pdmean1.to_csv('/data5/jmanning/modvsobs/roms/totalcalculate.csv',index=True,float_format='%8.3f')
pdmean1.to_csv('/data5/jmanning/modvsobs/totalcalculate'+mode+'.csv',index=True,float_format='%8.3f')
htmlmean=pdmean1.to_html(header=True,index=True,float_format=lambda x: '%10.2f' % x)
save(htmlmean,'/net/nwebserver/epd/ocean/MainPage/modvsobs/emoltvsnecofs_diff'+mode+'.html')
print 'mean='+str(np.mean(pdmean1['mean']))
print 'rms   ='+str(np.mean(pdmean1['rms']))