def test_agg_grouping_is_list_tuple(ts):
    df = tm.makeTimeDataFrame()

    grouped = df.groupby(lambda x: x.year)
    grouper = grouped.grouper.groupings[0].grouper
    grouped.grouper.groupings[0] = Grouping(ts.index, list(grouper))

    result = grouped.agg(np.mean)
    expected = grouped.mean()
    tm.assert_frame_equal(result, expected)

    grouped.grouper.groupings[0] = Grouping(ts.index, tuple(grouper))

    result = grouped.agg(np.mean)
    expected = grouped.mean()
    tm.assert_frame_equal(result, expected)
Пример #2
0
def _get_grouper(obj, key=None, axis=0, level=None, sort=True):
    """
    create and return a BaseGrouper, which is an internal
    mapping of how to create the grouper indexers.
    This may be composed of multiple Grouping objects, indicating
    multiple groupers

    Groupers are ultimately index mappings. They can originate as:
    index mappings, keys to columns, functions, or Groupers

    Groupers enable local references to axis,level,sort, while
    the passed in axis, level, and sort are 'global'.

    This routine tries to figure of what the passing in references
    are and then creates a Grouping for each one, combined into
    a BaseGrouper.

    """

    # The implementation is essentially the same as pandas.core.groupby

    group_axis = obj._get_axis(axis)

    # validate thatthe passed level is compatible with the passed
    # axis of the object
    if level is not None:
        if not isinstance(group_axis, MultiIndex):
            if isinstance(level, compat.string_types):
                if obj.index.name != level:
                    raise ValueError('level name %s is not the name of the '
                                     'index' % level)
            elif level > 0:
                raise ValueError('level > 0 only valid with MultiIndex')

            level = None
            key = group_axis

    # a passed in Grouper, directly convert
    if isinstance(key, Grouper):
        binner, grouper, obj = key._get_grouper(obj)
        if key.key is None:
            return grouper, [], obj
        else:
            return grouper, set([key.key]), obj

    # already have a BaseGrouper, just return it
    elif isinstance(key, BaseGrouper):
        return key, [], obj

    if not isinstance(key, (tuple, list)):
        keys = [key]
    else:
        keys = key

    # what are we after, exactly?
    match_axis_length = len(keys) == len(group_axis)
    any_callable = any(callable(g) or isinstance(g, dict) for g in keys)
    any_arraylike = any(
        isinstance(g, (list, tuple, Series, Index, np.ndarray)) for g in keys)

    try:
        if isinstance(obj, DataFrame):
            all_in_columns = all(g in obj.columns for g in keys)
        else:
            all_in_columns = False
    except Exception:
        all_in_columns = False

    if (not any_callable and not all_in_columns and not any_arraylike
            and match_axis_length and level is None):
        keys = [com._asarray_tuplesafe(keys)]

    if isinstance(level, (tuple, list)):
        if key is None:
            keys = [None] * len(level)
        levels = level
    else:
        levels = [level] * len(keys)

    groupings = []
    exclusions = []

    # if the actual grouper should be obj[key]
    def is_in_axis(key):
        if not _is_label_like(key):
            try:
                obj._data.items.get_loc(key)
            except Exception:
                return False

        return True

    # if the the grouper is obj[name]
    def is_in_obj(gpr):
        try:
            return id(gpr) == id(obj[gpr.name])
        except Exception:
            return False

    for i, (gpr, level) in enumerate(zip(keys, levels)):

        if is_in_obj(gpr):  # df.groupby(df['name'])
            in_axis, name = True, gpr.name
            exclusions.append(name)

        elif is_in_axis(gpr):  # df.groupby('name')
            in_axis, name, gpr = True, gpr, obj[gpr]
            exclusions.append(name)

        else:
            in_axis, name = False, None

        if com.is_categorical_dtype(gpr) and len(gpr) != len(obj):
            raise ValueError(
                "Categorical dtype grouper must have len(grouper) == len(data)"
            )

        ping = Grouping(group_axis,
                        gpr,
                        obj=obj,
                        name=name,
                        level=level,
                        sort=sort,
                        in_axis=in_axis)

        groupings.append(ping)

    if len(groupings) == 0:
        raise ValueError('No group keys passed!')

    # create the internals grouper
    # Modified to insert CustomGrouper
    grouper = CustomGrouper(group_axis, groupings, sort=sort)
    return grouper, exclusions, obj