def check_code(): input_keyword = input('Please input keyword for the stock searching for:') all_ticker = data.get_nasdaq_symbols(retry_count=3, timeout=30, pause=None) all_ticker = all_ticker.drop(columns=[ 'Nasdaq Traded', 'Listing Exchange', 'Market Category', 'ETF', 'Round Lot Size', 'Test Issue', 'Financial Status', 'CQS Symbol', 'NASDAQ Symbol', 'NextShares' ]) name_list = all_ticker['Security Name'].values.tolist() name_list = [x.lower() for x in name_list] l = [] num = 0 for item in name_list: if input_keyword in item: l.insert(num, item) num = num + 1 all_ticker = all_ticker.reset_index() all_ticker = all_ticker.set_index('Security Name') code_dic = all_ticker.to_dict() new_dic = code_dic.get('Symbol') new_dic = {k.lower(): v for k, v in new_dic.items()} print('\nBelow are code for security name containing: ' + input_keyword + '\n') for item in l: p = str(item) + ' ---- ' + str(new_dic.get(item)) print(p) next = next_request() return next
def retrieve_stock_data(symbol): """ Implements pandas_datareader to extract data from RobinHood's API into a pandas DataFrame. :param symbol: String, ticker-symbol of the stock who's data is to be retrieved. :return: pandas DataFrame object of stock data """ data = pdr.DataReader(symbol, 'robinhood') nasdaq = pdr.get_nasdaq_symbols() name = nasdaq["Security Name"][symbol] return data, name
def read_stock_data() -> pd.DataFrame: """ A simple function to retrieve the stock data Returns ------- pandas.DataFrame A Pandas DataFrame that stock data """ try: data = pd.read_csv(stocks_path) except FileNotFoundError: data = pdr.get_nasdaq_symbols() save(data, stocks_path) return data
import logging
def save_nasdaq(): nasdaq = web.get_nasdaq_symbols() nasdaq.to_pickle("./data/nasdaq_symbols.pkl") return nasdaq
import tkinter as tk import tkinter.ttk as ttk from autocompletebox import AutocompleteEntry from autocompletebox import NO_RESULTS_MESSAGE import pandas_datareader.data as data from scraper import getIncomeAnalysis from scraper import getExpenseAnalysis from scraper import getLiabilityAnalysis import matplotlib import matplotlib.pyplot as plt from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg from matplotlib.figure import Figure matplotlib.use("TkAgg") all_ticker = data.get_nasdaq_symbols(retry_count=3, timeout=30, pause=None) all_ticker = all_ticker.drop(columns=[ 'Nasdaq Traded', 'Listing Exchange', 'Market Category', 'ETF', 'Round Lot Size', 'Test Issue', 'Financial Status', 'CQS Symbol', 'NASDAQ Symbol', 'NextShares' ]) all_ticker = all_ticker.reset_index() all_ticker = all_ticker.set_index('Security Name') code_dic = all_ticker.to_dict() code_dic = code_dic.get('Symbol') class Application(tk.Frame, object): """Main Class of the application Methods: __init__ -- Set up the UI
def get_all_stock_code() -> []: sym = pdr.get_iex_symbols() pdr.get_nasdaq_symbols() return sym['symbol'].to_list()
import os import pandas as pd from pandas_datareader import data as web # Package and modules for importing data; this code may change depending on pandas version import datetime from sklearn.linear_model import LinearRegression import numpy as np # Setting up the model linreg = LinearRegression() # Collecting stock tickers we are interested in t = web.get_nasdaq_symbols() t = t[t['Financial Status'] == 'N'] t = t[t['Listing Exchange'] == 'Q'] t = t[t['Test Issue'] == False] tickers = t.index.values money = 10000 portfolio = dict((t, 0) for t in tickers) currPrice = dict((t, 0) for t in tickers) def evaulateForTrade(ticker, start, end): # First argument is the series we want, second is the source ("yahoo" for Yahoo! Finance), third is the start date, fourth is the end date try: stock = web.DataReader(ticker, "yahoo", start, end) type(stock) close = stock['Adj Close'].values[-10:] x = np.arange(1, len(close) + 1).reshape(-1, 1) linreg.fit(x, close) if (linreg.coef_ > 0): return True except Exception as e: