Пример #1
0
def getstockopts(stockname, save=True):
    opts = Options(stockname, 'yahoo')
    expirydates = opts.expiry_dates
    dateexp = datetime(2017, 12, 15)  #manually set to this
    calldata = opts.get_call_data(expiry=dateexp)
    putdata = opts.get_put_data(expiry=dateexp)
    prices = web.DataReader(stockname, 'yahoo', today)

    call_impt = calldata[['Last', 'Open_Int', 'Underlying_Price']]
    call_indexed_impt = call_impt.reset_index()

    put_impt = putdata[['Last', 'Open_Int', 'Underlying_Price']]
    put_indexed_impt = put_impt.reset_index()
    datstr = str(today.date())
    comb_indexed_impt = pd.concat([call_indexed_impt, put_indexed_impt])
    comb_indexed_impt.index = [datstr] * len(comb_indexed_impt.index)
    prices_indexed = prices.reset_index()
    prices_indexed.index = [datstr] * len(prices_indexed.index)
    if save:
        foldlists = os.listdir(datfold)

        foldname = stockname + '/'

        if stockname not in foldlists:
            os.mkdir(datfold + foldname)
            os.mkdir(datfold + foldname + 'options/')
            os.mkdir(datfold + foldname + 'prices/')
        stockoptlist = os.listdir(datfold + foldname + 'options/')
        stockpricelist = os.listdir(datfold + foldname + 'prices/')
        stockoptname = stockname + '-options.csv'
        stockpricename = stockname + '-prices.csv'
        if stockoptname not in stockoptlist:

            comb_indexed_impt.to_csv(datfold + foldname + 'options/' +
                                     stockoptname)
        else:
            comb_indexed_impt.to_csv(datfold + foldname + 'options/' +
                                     stockoptname,
                                     mode='a',
                                     header=False)

        if stockpricename not in stockpricelist:
            prices_indexed.to_csv(datfold + foldname + 'prices/' +
                                  stockpricename)
        else:
            prices_indexed.to_csv(datfold + foldname + 'prices/' +
                                  stockpricename,
                                  mode='a',
                                  header=False)
    print('stock : ' + stockname + ' DONE')
Пример #2
0
Created on Thu Dec  6 23:36:56 2018

@author: dpsugasa
"""

import pandas as pd
from numpy import sqrt,mean,log,diff
import QuantLib as ql
from pandas_datareader.data import Options
import pandas_datareader.data as web
import datetime

opt = Options('spy', 'google')
expiration_dates = [ql.Date(i.day, i.month, i.year) for i in opt.expiry_dates]
expiry_index = 14 # choose the contracts expire on 11/17/2017
data = opt.get_call_data(expiry=opt.expiry_dates[expiry_index])
strikes = list(data.index.get_level_values('Strike'))
premium = list(data['Last'])
day_count = ql.Actual365Fixed()
calendar = ql.UnitedStates()
calculation_date = ql.Date(opt._quote_time.day,opt._quote_time.month,opt._quote_time.year) # 08/10/2017
spot = opt.underlying_price  # spot price is 244.82
ql.Settings.instance().evaluationDate = calculation_date
dividend_yield = ql.QuoteHandle(ql.SimpleQuote(0.0))
risk_free_rate = 0.01
dividend_rate = 0.0
flat_ts = ql.YieldTermStructureHandle(
    ql.FlatForward(calculation_date, risk_free_rate, day_count))
dividend_ts = ql.YieldTermStructureHandle(
    ql.FlatForward(calculation_date, dividend_rate, day_count))
# dummy parameters
Пример #3
0
class OptionLib:
    def __init__(self,
                 symbol='SPY',
                 dataprovider='yahoo',
                 riskfree=0.01,
                 dividendrate=0.01):

        self.SYMBOL = symbol
        self.data_provider = dataprovider

        self.__oldsymbol = symbol
        self.__olddataprovider = dataprovider

        self.risk_free_rate = riskfree
        self.dividend_rate = dividendrate

        self.opt = None

        self.IVs = {'c': [], 'p': []}

        self.__last_quote = None
        self.__underlying_price = None

        self.__data = None
        self.__data_core = None

        self.data_selection = (0, 'c')

        self.tickSize = 0.5
        self.data_init()

    #########################################################################################################
    #                                   Data Building and Housekeeping                                      #
    #########################################################################################################
    @waitSyncFlag
    def data_init(self):

        self.opt = Options(self.SYMBOL, self.data_provider)
        self.__underlying_price = self.opt.underlying_price
        self.data_building_core()
        self.lastGreeks = {'strike': None, 'data': {}, 'S': [], 'T': []}
        self.IVs = {'c': [], 'p': []}

        self.data_aggregate_IV()

    @waitSyncFlag
    def data_refresh(self):

        self.__underlying_price = self.opt.underlying_price
        self.data_building_core()
        self.lastGreeks = {'strike': None, 'data': {}, 'S': [], 'T': []}
        self.IVs = {'c': [], 'p': []}
        self.data_aggregate_IV()

    @parallelProcess
    def data_auto_refresh(self):
        # This should be running in another thread
        while True:
            if not (self.SYMBOL == self.__oldsymbol
                    and self.data_provider == self.__olddataprovider):
                self.__oldsymbol, self.__olddataprovider = self.SYMBOL, self.data_provider
                self.__last_quote = self.opt.get_call_data(
                ).iloc[0]['Quote_Time'].to_pydatetime()
                self.data_init()
                print('Data Initialization for {} [ COMPLETE ]'.format(
                    self.SYMBOL))
            if not (self.opt.get_call_data().iloc[0]
                    ['Quote_Time'].to_pydatetime() == self.__last_quote):
                self.__last_quote = self.opt.get_call_data(
                ).iloc[0]['Quote_Time'].to_pydatetime()
                self.data_refresh()
                print('Data Refreshing for {} [ COMPLETE ]'.format(
                    self.SYMBOL))

    @requireSyncFlag
    def data_building_core(self):
        try:
            assert self.opt
            df = self.opt.get_all_data()
            dflen = len(df.index.values)
            d = {}
            for i in range(dflen):

                dfindex = df.index.values[i]
                row = df.loc[dfindex]
                exp = dfindex[1].to_pydatetime()
                curr = row['Quote_Time'].to_pydatetime()
                toe = float((exp - curr).days) / 365.0
                # Days until expiration
                dte = round(toe * 365) + 1
                otype = 'c' if dfindex[2] == 'call' else 'p'
                # Index will be using expiry_date index
                expd = exp.date()
                j = self.opt.expiry_dates.index(expd)
                bso = Black_Scholes(option_type=otype,
                                    price=row['Underlying_Price'],
                                    strike=dfindex[0],
                                    interest_rate=self.risk_free_rate,
                                    dividend_yield=self.dividend_rate,
                                    volatility=row['IV'],
                                    expiry=toe)
                # Check if the index exists or not
                if not (j in d):
                    d[j] = {'matrix': [], 'indexes': []}
                # [ [ Ask, Bid, Last, Vol, %, sigma, delta, gamma, kappa, theta, rho, dte, symbol] , (...) ]
                d[j]['matrix'].append([
                    row['Ask'], row['Bid'], row['Last'],
                    int(row['Vol']), row['PctChg'],
                    round(row['IV'], 2),
                    round(bso.delta, 2),
                    round(bso.gamma, 2),
                    round(bso.kappa, 2),
                    round(bso.theta, 2),
                    round(bso.rho, 2), dte, dfindex[3]
                ])
                # [ ( type, strike), ... ]
                d[j]['indexes'].append((otype, dfindex[0]))
            self.__data_core = d
        except AssertionError:
            raise DataFormatError(
                'No Data from Yahoo, Check Internet Connection')

    @requireSyncFlag
    def data_aggregate_IV(self):
        """
        Aggregate Contract's sigma by call and puts then store them in [ Time to Expiration, Strike, Volatility ]
        format for later plotting
        """
        try:
            assert self.__data_core
            d = self.__data_core.copy()

            for t in d.keys():
                matrix = d[t]['matrix']
                indexes = d[t]['indexes']
                for i in range(len(matrix)):
                    # Format : [ Time to Expiration, Strike, Volatility ]
                    self.IVs[indexes[i][0]].append(
                        [matrix[i][11], indexes[i][1], matrix[i][5]])

        except AssertionError:
            raise DataFormatError('Must input a pandas.DataFrame')

    def data_IVpT(self, expiry_index=0):
        """
        Compute IV per timestamp
        :return: calls and puts
        """
        dt = self.__data_core[expiry_index].copy()
        matrix = dt['matrix']
        indexes = dt['indexes']
        calls, puts = [], []
        # calls = [ [ Strike, IV] , ... ]
        for i in range(len(matrix)):
            if indexes[i][0] == 'c':
                calls.append([indexes[i][1], matrix[i][5]])
            else:
                puts.append([indexes[i][1], matrix[i][5]])
        return calls, puts

    def data_aggregate_greeks(self, strike=None):
        """

        :return:
        """
        try:
            assert self.__data_core
            assert strike
            d = self.__data_core.copy()
            times = []
            sigmas = []

            for t in d.keys():
                matrix = d[t]['matrix']
                indexes = d[t]['indexes']
                for i in range(len(matrix)):
                    if indexes[i][0] == 'c' and indexes[i][1] == strike:
                        sigmas.append(matrix[i][5])
                        times.append(float(matrix[i][11]) / 365.0)

            # Matrices are n x m
            #   where n : the nb of contract_dates
            # compute underlyingPrice matrix

            underlyingPriceMatrix = np.array([
                np.arange(0.0, self.__underlying_price * 2, self.tickSize)
                for i in range(len(sigmas))
            ])

            MatrixShape = underlyingPriceMatrix.shape

            sigmaMatrix = np.array([
                np.ones(MatrixShape[1]) * sigmas[i]
                for i in range(MatrixShape[0])
            ]).reshape(MatrixShape)

            expiryMatrix = np.array([
                np.ones(MatrixShape[1]) * times[i]
                for i in range(MatrixShape[0])
            ]).reshape(MatrixShape)

            ccontracts = []
            pcontracts = []

            for i in range(MatrixShape[0]):

                for j in range(MatrixShape[1]):
                    cbso = Black_Scholes(option_type='c',
                                         strike=strike,
                                         price=underlyingPriceMatrix[i][j],
                                         interest_rate=self.risk_free_rate,
                                         dividend_yield=self.dividend_rate,
                                         expiry=expiryMatrix[i][j],
                                         volatility=sigmaMatrix[i][j])

                    pbso = Black_Scholes(option_type='p',
                                         strike=strike,
                                         price=underlyingPriceMatrix[i][j],
                                         interest_rate=self.risk_free_rate,
                                         dividend_yield=self.dividend_rate,
                                         expiry=expiryMatrix[i][j],
                                         volatility=sigmaMatrix[i][j])
                    #Access elements in matrix[i][j]
                    ccontracts.append(cbso)
                    pcontracts.append(pbso)

            cdelta = np.array([c.delta
                               for c in ccontracts]).reshape(MatrixShape)
            cgamma = np.array([c.gamma
                               for c in ccontracts]).reshape(MatrixShape)
            ctheta = np.array([c.theta
                               for c in ccontracts]).reshape(MatrixShape)
            ckappa = np.array([c.kappa
                               for c in ccontracts]).reshape(MatrixShape)
            crho = np.array([c.rho for c in ccontracts]).reshape(MatrixShape)

            pdelta = np.array([p.delta
                               for p in pcontracts]).reshape(MatrixShape)
            pgamma = np.array([p.gamma
                               for p in pcontracts]).reshape(MatrixShape)
            ptheta = np.array([p.theta
                               for p in pcontracts]).reshape(MatrixShape)
            pkappa = np.array([p.kappa
                               for p in pcontracts]).reshape(MatrixShape)
            prho = np.array([p.rho for p in pcontracts]).reshape(MatrixShape)

            greeks = {'c': {}, 'p': {}}
            greeks['c']['delta'] = cdelta
            greeks['c']['gamma'] = cgamma
            greeks['c']['theta'] = ctheta
            greeks['c']['kappa'] = ckappa
            greeks['c']['rho'] = crho

            greeks['p']['delta'] = pdelta
            greeks['p']['gamma'] = pgamma
            greeks['p']['theta'] = ptheta
            greeks['p']['kappa'] = pkappa
            greeks['p']['rho'] = prho

            self.lastGreeks['data'] = greeks
            self.lastGreeks['strike'] = strike
            self.lastGreeks['S'] = underlyingPriceMatrix
            self.lastGreeks['T'] = expiryMatrix

        except AssertionError:
            pass
        pass

    #########################################################################################################
    #                                   Client's Methods and Properties                                     #
    #########################################################################################################

    @property
    def index(self):
        opt = self.opt
        d = {'Expiry Dates': opt.expiry_dates}
        return pd.DataFrame(data=d).transpose()

    @property
    def data(self):

        print('Underlying @ {:.2f} \nLatest Option Quote @: {}\n'.format(
            self.__underlying_price, self.__last_quote))
        print('Current Contracts Expires @ {}\n'.format(
            self.opt.expiry_dates[self.data_selection[0]]))
        obj = self.__data_core[self.data_selection[0]]
        data = np.array(obj['matrix'])
        indexes = obj['indexes']
        filtered_matrix = []
        filtered_indexes = []

        for i in range(len(data)):
            if indexes[i][0] == self.data_selection[1]:
                filtered_matrix.append(data[i])
                filtered_indexes.append(indexes[i][1])

        columns = [
            'Ask', 'Bid', 'Last', 'Vol', '%', '\u03C3', '\u0394', '\u0393',
            '\u039A', '\u0398', '\u03A1', 'Days to Expiry', 'Symbol'
        ]
        df = pd.DataFrame(data=filtered_matrix,
                          index=filtered_indexes,
                          columns=columns)
        return df

    @property
    def VIEW_SELECTION(self):
        return 'CURRENTLY SELECTED DATA :: [ INDEX : {} | TYPE : {} | SYMBOL : {} ]'.format(
            self.data_selection[0], self.data_selection[1], self.SYMBOL)

    def select(
        self,
        INDEX=0,
        TYPE='c',
    ):
        """
        Setting the data-selecting tuple
        """
        try:
            assert TYPE == 'c' or TYPE == 'p'
            assert INDEX < len(self.opt.expiry_dates)
            self.data_selection = (INDEX, TYPE)
        except AssertionError:
            raise DataFormatError(
                'Expiry index and option type ("c" or "p") must be valid')

    #########################################################################################################
    #                                       Plotting                                                        #
    #########################################################################################################

    def plot_smile(
        self,
        expiry_index=None,
    ):
        """
        Plot the IV smile for both calls and puts per timestamp
        """
        expiry_index = expiry_index if expiry_index else self.data_selection[0]
        calls, puts = self.data_IVpT(expiry_index=expiry_index)

        k_calls, IV_calls = [], []
        k_puts, IV_puts = [], []

        for el in calls:
            k_calls.append(el[0])
            IV_calls.append(el[1])
        for el in puts:
            k_puts.append(el[0])
            IV_puts.append(el[1])

        plt.figure(figsize=(16, 7))
        e = plt.scatter(k_calls, IV_calls, c='white', label="IV(call options)")
        f = plt.scatter(k_puts, IV_puts, c='red', label="IV(put options)")
        plt.xlabel('strike')
        plt.ylabel('Implied Volatility')
        plt.legend((e, f), ("IV (call options)", "IV (put options)"))

    def plot_surface(
        self,
        option_type=None,
    ):
        try:
            if option_type:
                assert option_type == 'c' or option_type == 'p'
            option_type = option_type if option_type else self.data_selection[1]
            plotdata = self.IVs[option_type]
            color = 'red' if option_type == 'p' else 'green'

            xaxis = [plotdata[i][0] for i in range(len(plotdata))]
            yaxis = [plotdata[i][1] for i in range(len(plotdata))]
            zaxis = [plotdata[i][2] for i in range(len(plotdata))]

            fig1 = plt.figure(figsize=(20, 12))
            ax = fig1.add_subplot(111, projection='3d')
            ax.view_init()
            ax.scatter(xaxis, yaxis, zaxis, c=color)
            plt.xlabel("Time to Expiration (days)")
            plt.ylabel("Strikes")
            plt.title("Implied Volatility")

            fig2 = plt.figure(figsize=(20, 12))
            ax2 = fig2.add_subplot(111, projection='3d')
            ax2.view_init()
            ax2.plot_trisurf(xaxis, yaxis, zaxis, cmap=cm.jet)
            plt.xlabel("Time to Expiration (days)")
            plt.ylabel("Strikes")
            plt.title("Implied Volatility")

        except AssertionError:
            print(
                'You must specify option type as first argument and/or Invalid option type'
            )
        except Exception as e:
            print(e)

    def plot_letter(self, LETTER=None, STRIKE=None, otype='c'):
        try:
            assert LETTER in ['delta', 'gamma', 'theta', 'kappa', 'rho']
            data = {}
            S, T = [], []
            strike = STRIKE if STRIKE else np.round(self.__underlying_price)

            if self.lastGreeks['strike'] and self.lastGreeks[
                    'strike'] == strike:
                data, S, T = self.lastGreeks['data'], self.lastGreeks[
                    'S'], self.lastGreeks['T']
            else:
                self.data_aggregate_greeks(strike=strike)
                data, S, T = self.lastGreeks['data'], self.lastGreeks[
                    'S'], self.lastGreeks['T']

            print('Plotting {} with Strike {} for {} - {}\n'.format(
                LETTER, strike, self.SYMBOL, otype))

            Z = data[otype][LETTER]
            fig = plt.figure(figsize=(20, 11))
            ax = fig.add_subplot(111, projection='3d')
            ax.view_init(40, 290)
            ax.plot_wireframe(S, T, Z, rstride=1, cstride=1)
            ax.plot_surface(S,
                            T,
                            Z,
                            facecolors=cm.jet(Z),
                            linewidth=0.001,
                            rstride=1,
                            cstride=1,
                            alpha=0.75)
            ax.set_zlim3d(0, Z.max())
            ax.set_xlabel('Stock Price')
            ax.set_ylabel('Time to Expiration')
            ax.set_zlabel(LETTER)
            m = cm.ScalarMappable(cmap=cm.jet)
            m.set_array(Z)
            cbarDelta = plt.colorbar(m)

        except AssertionError:
            raise DataFormatError('Invalid Letter')
        except ValueError:
            raise DataFormatError(
                'Invalid Calculations for {} :: Something went wrong on our end :$'
                .format(LETTER))
Пример #4
0
# op_name = raw_input('Please enter Option Name (European/American): ')
# op_type = raw_input('Please enter Option Type (call/put): ')
# stock, option, hedge = option_tree(S0, K, N, op_name, op_type)

# stock, option, hedge = option_tree(10, 10, 2, 'ameRican', 'Put')
# print(stock)
# print(option)
# print(hedge)

#############################################################################################
##################################### Output the Result #####################################
#############################################################################################

# Get Bid Price, Ask Price for Call and Put Options
goog = Options('GOOG', 'yahoo')
call_data = goog.get_call_data(6, 2018)
bid_call = call_data['Bid']
ask_call = call_data['Ask']
put_data = goog.get_put_data(6, 2018)
bid_put = put_data['Bid']
ask_put = put_data['Ask']

# Calculate the Value of Option
# value_call_option = []    # Value of Option for Call Option
# value_put_option = []     # Value of Option for Put Option
#
# for i in range(len(bid_call)):
#     value_call_option.append((bid_call[i] + ask_call[i]) / 2)
#     value_put_option.append((bid_put[i] + ask_put[i]) / 2)

# Get Options' Strike Prices for Call and Put
import pandas_datareader.data as web
from pandas_datareader.data import Options
import datetime
import pandas as pd
pd.set_option('display.width', 300)

#data = web.DataReader(stock,self.provider, start, end)

#data = web.DataReader("AAPL","google", "01/01/2017", "05/05/2017")
#print(data)

expiry = datetime.date(2017, 2, 2)
aapl = Options('aapl','yahoo')
data = aapl.get_call_data(expiry=expiry)

print(data)