def __init__(self, input_dim, active_dims=None): Parameterized.__init__(self) self.input_dim = input_dim if active_dims is None: self.active_dims = slice(input_dim) else: self.active_dims = active_dims
def __init__(self, name='model'): """ name is a string describing this model. """ Parameterized.__init__(self) self._name = name self._needs_recompile = True self._session = tf.Session() self._free_vars = tf.placeholder(tf.float64)
def __init__(self, input_dim, active_dims=None): """ input dim is an integer active dims is a (slice | iterable of integers | None) """ Parameterized.__init__(self) self.input_dim = input_dim if active_dims is None: self.active_dims = slice(input_dim) else: self.active_dims = tf.constant(np.array(active_dims, dtype=np.int32), tf.int32)
def __getstate__(self): """ This mehtod is necessary for pickling objects """ d = Parameterized.__getstate__(self) d.pop('_session') d.pop('_free_vars') try: d.pop('_objective') d.pop('_minusF') d.pop('_minusG') except: pass return d
def __init__(self): Parameterized.__init__(self) self.num_gauss_hermite_points = 20
def __setstate__(self, d): Parameterized.__setstate__(self, d) self._needs_recompile = True self._session = tf.Session()