# profile = False profile = True if len(sys.argv) < 2: print("Please specifiy the name of the .py file to execute.") sys.exit() file_name = sys.argv[1] if file_name[-3:] == '.py': file_name = file_name[:-3] print(f'submit_to_slurm.py will submit the file {file_name}.py') if file_name == 'main_qlearning': parameters.update(parameters_vanilla) output_folder_name = 'q_learning' job_name = 'QLearning' elif file_name == 'main_DQL': parameters.update(parameters_deep) output_folder_name = 'deep_q_learning' job_name = 'DQL' else: raise ValueError('Wrong file name.') if len(sys.argv) < 3: n_arrays = 1 else: n_arrays = int(sys.argv[2])
print(gini_score) y_pred = np.zeros(len(y_test)) print("gini normalized score: ") gini_score = gini_normalized(y_test, y_pred) print(gini_score) y_pred = np.ones(len(y_test)) print("gini normalized score: ") gini_score = gini_normalized(y_test, y_pred) print(gini_score) print("mean de y pred") print(np.mean(y_pred)) y_pred = (y_pred > 0.5) # Making the Confusion Matrix cm = confusion_matrix(y_test, y_pred) print("confusion matrix") print(cm) parameters.update({ "result": { "tp": int(cm[0, 0]), "tn": int(cm[1, 1]), "fp": int(cm[1, 0]), "fn": int(cm[0, 1]), "gini_score": gini_score }})
import numpy as np import sys import deep_q_learning as dql import json from pathlib import Path import time start_time = time.time() if Path('info.json').is_file(): with open('info.json') as f: info = json.load(f) parameters = info['parameters'] else: from parameters import parameters, parameters_deep parameters.update(parameters_deep) if len(sys.argv) < 2: array_index = 1 create_output_files = False print("Output files won't be created.") else: array_index = int(sys.argv[1]) create_output_files = True print("Output files will be created.") # The seed here is for the exploration randomness # The initial state of the system use a different seed (if random) print(f"Array n. {array_index}") seed_qlearning = array_index print(f'The seed used for the q_learning algorithm = {seed_qlearning}.')