Пример #1
0
def calculate_terrain_offset(output, dem_file, image_file, exec_dir,
                             bkeepmidfile):
    if io_function.is_file_exist(
            image_file) is False or io_function.is_file_exist(
                dem_file, ) is False:
        return False
    exefile = os.path.join(exec_dir, 'geometry_pro')
    nodata = parameters.get_nodata_value()

    (centre_lat, centre_lon) = RSImage.get_image_latlon_centre(image_file)
    if centre_lat is False or centre_lon is False:
        return False

    image_obj = RSImageclass()
    if image_obj.open(image_file) is False:
        return False
    dem_obj = RSImageclass()
    if dem_obj.open(dem_file) is False:
        return False

    x_res = image_obj.GetXresolution()
    y_res = image_obj.GetYresolution()
    x_res_dem = dem_obj.GetXresolution()
    y_res_dem = dem_obj.GetYresolution()

    image_prj = image_obj.GetProjection()
    dem_prj = dem_obj.GetProjection()

    #check projection and resolution, and convert it if need
    #use orthometricH_file as base image
    dem_convertedfile = io_function.get_name_by_adding_tail(dem_file, 'tran')
    if x_res != x_res_dem or y_res != y_res_dem or image_prj != dem_prj:
        if os.path.isfile(dem_convertedfile) is False:
            if map_projection.transforms_raster_srs(
                    dem_file, image_prj, dem_convertedfile, abs(x_res),
                    abs(y_res)) is False:
                return False
    if os.path.isfile(dem_convertedfile):
        dem_file = dem_convertedfile

    #sub  dem file
    (ulx, uly, lrx, lry) = RSImage.get_image_proj_extent(image_file)
    if ulx is False:
        return False
    tail = os.path.splitext(os.path.basename(image_file))[0]
    dem_file_sub = io_function.get_name_by_adding_tail(dem_file, tail)
    if os.path.isfile(dem_file_sub) is False:
        if RSImageProcess.subset_image_projwin(dem_file_sub, dem_file, ulx,
                                               uly, lrx, lry) is False:
            return False

    #calculateing terrain contains a lot of I/O operations, the parallel computing will slow down it
    nblockwidth = 8000
    nblcckheight = 8000
    njobs = 1

    logfile = 'cal_terrain_offset_log.txt'

    CommandString = exefile \
                    + ' -i ' + image_file + ' -d ' + dem_file_sub \
                    + ' -o '  + output  + ' -n ' + str(nodata)\
                    + ' -w ' + str(nblockwidth) + ' -h ' + str(nblcckheight) + ' -j ' +str(njobs) \
                    + ' --centre_lat=' + str(centre_lat)  \
                    + ' --logfile=' + logfile

    basic.outputlogMessage(CommandString)
    (status, result) = commands.getstatusoutput(CommandString)
    basic.outputlogMessage(result)

    if bkeepmidfile is False:
        # if os.path.isfile(dem_convertedfile):
        #     io_function.delete_file_or_dir(dem_convertedfile)
        if os.path.isfile(dem_file_sub):
            io_function.delete_file_or_dir(dem_file_sub)

    if os.path.isfile(output):
        if os.path.getsize(output) > 0:
            return output
        else:
            basic.outputlogMessage('error: the size of file %s is 0' %
                                   os.path.basename(output))
            return False
    else:
        return False
Пример #2
0
def convert_orthometricH_to_elliopsoidalH(output, orthometricH_file,
                                          geoidHfile):
    if io_function.is_file_exist(
            orthometricH_file) is False or io_function.is_file_exist(
                geoidHfile) is False:
        return False

    orthom_obj = RSImageclass()
    if orthom_obj.open(orthometricH_file) is False:
        return False
    geoidH_obj = RSImageclass()
    if geoidH_obj.open(geoidHfile) is False:
        return False

    Nodata = parameters.get_nodata_value()

    x_res = orthom_obj.GetXresolution()
    y_res = orthom_obj.GetYresolution()
    x_res_geoid = geoidH_obj.GetXresolution()
    y_res_geoid = geoidH_obj.GetYresolution()

    orthom_prj = orthom_obj.GetProjection()
    geoid_prj = geoidH_obj.GetProjection()

    #check projection and resolution, and convert it if need
    #use orthometricH_file as base image
    if x_res != x_res_geoid or y_res != y_res_geoid or orthom_prj != geoid_prj:
        geoid_convertfile = io_function.get_name_by_adding_tail(
            geoidHfile, 'tran')
        if os.path.isfile(geoid_convertfile) is False:
            if RSImageProcess.transforms_raster_srs(
                    geoidHfile, orthom_prj, geoid_convertfile, abs(x_res),
                    abs(y_res)) is False:
                return False
        else:
            basic.outputlogMessage(geoid_convertfile + ' already exist')

    #sub geoidHfile base on the small one
    (ulx, uly, lrx,
     lry) = RSImageProcess.get_image_proj_extent(orthometricH_file)
    if ulx is False:
        return False
    geoid_convertfile_sub = io_function.get_name_by_adding_tail(
        geoid_convertfile, 'sub')
    if os.path.isfile(geoid_convertfile_sub) is False:
        result = RSImageProcess.subset_image_projwin(geoid_convertfile_sub,
                                                     geoid_convertfile, ulx,
                                                     uly, lrx, lry)
        if result is False:
            return False
    else:
        basic.outputlogMessage(geoid_convertfile_sub + ' already exist')

    ##caculate elliopsoidal height
    # orthometricH_data = img_pro.Read_Image_band_data_to_numpy_array_all_pixel(1,orthometricH_file)
    # img_pro = None
    # img_pro = RSImgProclass(syslog)
    # geoidH_data = img_pro.Read_Image_band_data_to_numpy_array_all_pixel(1,geoid_convertfile_sub)
    # img_pro = None
    # if orthometricH_data.shape != geoidH_data.shape:
    #     syslog.outputlogMessage("the shape of orthometricH_data and geoidH_data is different")
    #     return False
    #
    # nodata = parameters.get_nodata_value(syslog)
    # width  = orthom_obj.GetWidth()
    # height = orthom_obj.GetHeight()
    # orthometricH_data = orthometricH_data.astype(numpy.float32)
    # geoidH_data = geoidH_data.astype(numpy.float32)
    # elliopsoidalH = orthometricH_data + geoidH_data
    # elliopsoidalH = elliopsoidalH.reshape(height,width)
    #
    # RSImageProcess.save_numpy_2d_array_to_image_tif(output,elliopsoidalH,6,\
    #             orthom_obj.GetGeoTransform(),orthom_obj.GetProjection(),nodata,syslog)
    #
    # orthom_obj = None
    # geoidH_obj = None

    CommandString = 'gdal_calc.py  -A '+orthometricH_file + ' -B ' + geoid_convertfile_sub +\
      ' --NoDataValue='+str(Nodata)  +' --outfile='+output +  ' --calc="A+B"'
    if RSImageProcess.exec_commond_string_one_file(CommandString,
                                                   output) is False:
        return False
    else:
        basic.outputlogMessage(
            "converting orthometric Height to elliopsoidal Height is completed"
        )

    return True
Пример #3
0
def prepare_gimpdem_for_Jakobshavn(workdir):
    nodata = parameters.get_nodata_value()
    #mosaics gimdem files
    os.chdir(workdir)
    gimpdem_file = ['gimpdem1_2.tif', 'gimpdem2_2.tif']
    gimpdem_output = 'dem_gimp_jako.tif'
    if os.path.isfile(gimpdem_output) is False:
        if RSImageProcess.mosaics_images(gimpdem_file,
                                         gimpdem_output) is False:
            return False

    geoid_file = 'geoid_hegith_jako.tif'

    #convert srs
    img_temp = RSImageclass()
    if not img_temp.open(gimpdem_output):
        return False
    x_res = img_temp.GetXresolution()
    y_res = img_temp.GetYresolution()
    srs_UTM_prj4 = '\'+proj=utm +zone=22 +datum=WGS84 +units=m +no_defs\' '
    gimpdem_utm = io_function.get_name_by_adding_tail(gimpdem_output, 'utm22')
    if os.path.isfile(gimpdem_utm) is False:
        if RSImageProcess.transforms_raster_srs(gimpdem_output, srs_UTM_prj4,
                                                gimpdem_utm, abs(x_res),
                                                abs(y_res)) is False:
            return False

    # print img_temp.GetGDALDataType(),type(img_temp.GetGDALDataType())
    # print img_temp.GetProjection(),type(img_temp.GetProjection())
    # print img_temp.GetGeoTransform(),type(img_temp.GetGeoTransform())

    #get geoid_height
    # srs_longlat_wkt = "GEOGCS[\"WGS 84\",DATUM[\"WGS_1984\",SPHEROID[\"WGS 84\",6378137,298.257223563]],PRIMEM[\"Greenwich\",0],UNIT[\"degree\",0.01745329251994328]]"
    # srs_longlat_prj4 = '\'+proj=longlat +datum=WGS84 +no_defs\' '
    # image = RSImageclass(syslog)
    # if not image.open(gimpdem_utm):
    #     return False
    #
    # img_pro = RSImgProclass(syslog)
    # dem_data = img_pro.Read_Image_band_data_to_numpy_array_all_pixel(1,gimpdem_utm)
    # if dem_data is False:
    #     return False
    #
    # # geoid_height = geoid_height + -9999
    # geoid_utm_file = basic.get_name_by_adding_tail(geoid_file,'tran',syslog)
    # if RSImageProcess.transforms_raster_srs_to_base_image(geoid_file,gimpdem_utm,geoid_utm_file,\
    #                                                       x_res,y_res,syslog) is False:
    #     return False
    # geoid_height = img_pro.Read_Image_band_data_to_numpy_array_all_pixel(1,geoid_utm_file)
    # if geoid_height is False:
    #     return False
    #
    # #get ellipsoidal height
    # Image_array = dem_data + geoid_height
    # gimpdem_utm_elli = basic.get_name_by_adding_tail(gimpdem_utm,'elli',syslog)
    # RSImageProcess.save_numpy_2d_array_to_image_tif(gimpdem_utm_elli,Image_array,\
    #     image.GetGDALDataType(),image.GetGeoTransform(),image.GetProjection(),nodata)

    # image = None
    # img_pro = None
    return True
Пример #4
0
def get_geoimage_range_geoid_height(outputfile, ref_image):
    #convert srs
    ref_img_obj = RSImageclass()
    if not ref_img_obj.open(ref_image):
        return False
    # x_res = ref_img_obj.GetXresolution()
    # y_res = ref_img_obj.GetYresolution()
    width = ref_img_obj.GetWidth()
    height = ref_img_obj.GetHeight()

    img_pro = RSImgProclass()
    ref_image_data = img_pro.Read_Image_band_data_to_numpy_array_all_pixel(
        1, ref_image)
    if ref_image_data is False:
        return False

    nodata = parameters.get_nodata_value()
    Image_array = ref_image_data.reshape(height, width)
    start_x = ref_img_obj.GetStartX()
    start_y = ref_img_obj.GetStartY()
    resolution_x = ref_img_obj.GetXresolution()
    resolution_y = ref_img_obj.GetYresolution()
    ref_img_WKT = ref_img_obj.GetProjection()
    # ref_img_WKT = RSImageProcess.get_raster_or_vector_srs_info_wkt(ref_image,syslog)

    (i, j) = numpy.where(Image_array != nodata)
    input_x = start_x + j * resolution_x
    input_y = start_y + i * resolution_y

    # srs_longlat_prj4 = '\'+proj=longlat +datum=WGS84 +no_defs\''
    # intput_proj4 = RSImage.wkt_to_proj4(ref_img_WKT,syslog)
    # intput_proj4 = RSImageProcess.get_raster_or_vector_srs_info_proj4(ref_image,syslog)
    # map_projection.convert_points_coordinate_proj4(input_x,input_y,intput_proj4,srs_longlat_prj4,syslog)

    srs_longlat_wkt = "GEOGCS[\"WGS 84\",DATUM[\"WGS_1984\",SPHEROID[\"WGS 84\",6378137,298.257223563]],PRIMEM[\"Greenwich\",0],UNIT[\"degree\",0.01745329251994328]]"
    map_projection.convert_points_coordinate(input_x, input_y, ref_img_WKT,
                                             srs_longlat_wkt)

    tempsave_str = []
    save_point_txt_file = 'TXTgeoid_' + os.path.splitext(
        os.path.basename(ref_image))[0] + '.txt'
    if os.path.isfile(save_point_txt_file):
        file_object = open(save_point_txt_file, 'r')
        savepoints = file_object.readlines()
        for point in savepoints:
            tempsave_str.append(point)
        file_object.close()
        io_function.delete_file_or_dir(save_point_txt_file)
    file_object = open(save_point_txt_file, 'a')

    nsize = Image_array.size
    Image_array = Image_array.astype(numpy.float32)
    for index in range(0, nsize):
        lon_deg = input_x[index]
        lat_deg = input_y[index]
        if index < len(tempsave_str):
            temp_point = tempsave_str[index].split()
            value = float(temp_point[2])
        else:
            (LongitudeDeg, LongitudeMin, LongitudeSec) = degree_to_dms(lon_deg)
            (LatitudeDeg, LatitudeMin, LatitudeSec) = degree_to_dms(lat_deg)
            value = get_geoid_height(LatitudeDeg, LatitudeMin, LatitudeSec,
                                     LongitudeDeg, LongitudeMin, LongitudeSec,
                                     nodata)
            if value is False:
                break
        saved_point = ('%f  %f  %f' % (lon_deg, lat_deg, value))
        print saved_point
        # tempsave_str.append(saved_point)
        file_object.writelines(saved_point + '\n')
        file_object.flush()
        basic.outputlogMessage('Longitude=%f, Latitude=%f, geoid = %f' %
                               (lon_deg, lat_deg, value))
        # Image_array[index] = value
        Image_array[i[index], j[index]] = value
        print(i[index], j[index], Image_array[i[index], j[index]])

    file_object.close()
    if index != (nsize - 1):
        return False
    #save geoid height
    RSImageProcess.save_numpy_2d_array_to_image_tif(outputfile,Image_array,\
        6,ref_img_obj.GetGeoTransform(),ref_img_WKT,nodata)

    return True