def __init__(self, ticker): self.ticker = ticker params = getParams(ticker) self.mean = params[0][0] self.var = params[0][1] self.vol = params[1] self.price = get_price(self.ticker)
async def consumer(message, socket, socketID): global cameraParameters global isSendingVideo data = json.loads(message) if data['type'] == 'get camera params': await socket.send(json.dumps({'type': 'camera params', 'params': params.getParams()})) elif data['type'] == 'set camera param': params.setParam(data['name'], data['value'], cameraParameters) if (data['name'] == 'camera id'): init_camera() elif data['type'] == 'send video': videoClients.add(socketID) elif data['type'] == 'stop video': videoClients.remove(socketID) elif data['type'] == 'get input config': config = 'ERROR NO CONFIG' if (os.path.isfile('configs/inputs.txt')): file = open('configs/inputs.txt', 'r') config = file.read() message = json.dumps({'type': 'input config', 'config': config }) await socket.send(message) elif data['type'] == 'set input config': # write data['config'] to file file = open('configs/inputs.txt', 'w') file.write(data['config']) file.close()
def train(dataset_dir, augment=False, pretrained_coco=False): """Train the model""" config = FBSConfig() dataset_train = FBSDataset() dataset_train.load_data(dataset_dir, subset='train') dataset_train.prepare() dataset_val = FBSDataset() dataset_val.load_data(dataset_dir, subset='validate') dataset_val.prepare() augmentation = None if augment: augmentation = iaa.SomeOf((0, 6), [ iaa.Fliplr(0.5), iaa.Flipud(0.5), iaa.OneOf([ iaa.Affine(rotate=90), iaa.Affine(rotate=180), iaa.Affine(rotate=270) ]), iaa.Multiply((0.8, 1.5)), iaa.GaussianBlur(sigma=(0.0, 2.0)) ]) model = modellib.MaskRCNN(mode='training', config=config, model_dir=DEFAULT_MODEL_DIR) params = getParams('Mask_RCNN') epochs = params['epochs'] #TODO remove useless callbacks if pretrained_coco: COCO_MODEL_PATH = 'mask_rcnn_coco.h5' model.load_weights(COCO_MODEL_PATH, by_name=True, exclude=[ "mrcnn_class_logits", "mrcnn_bbox_fc", "mrcnn_bbox", "mrcnn_mask" ]) model.train(dataset_train, dataset_val, learning_rate=config.LEARNING_RATE, epochs=10, augmentation=augmentation, layers='heads') model.train(dataset_train, dataset_val, learning_rate=config.LEARNING_RATE, epochs=25, augmentation=augmentation, layers='all')
def train(dataset_dir, augment=False, pretrained_coco=False): """Train the model""" config = FBSConfig() config.display() dataset_train = FBSDataset() dataset_train.load_data(dataset_dir, subset='train') dataset_train.prepare() dataset_val = FBSDataset() dataset_val.load_data(dataset_dir, subset='validate') dataset_val.prepare() augmentation = None if augment: augmentation = iaa.SomeOf((0, 6), [ iaa.Fliplr(0.5), iaa.Flipud(0.5), iaa.OneOf([ iaa.Affine(rotate=90), iaa.Affine(rotate=180), iaa.Affine(rotate=270) ]) ]) model = modellib.MaskRCNN(mode='training', config=config, model_dir=DEFAULT_MODEL_DIR) params = getParams('Mask_RCNN') epochs = params['epochs'] if pretrained_coco: COCO_MODEL_PATH = 'mask_rcnn_coco.h5' model.load_weights(COCO_MODEL_PATH, by_name=True, exclude=[ "conv1", "mrcnn_class_logits", "mrcnn_bbox_fc", "mrcnn_bbox", "mrcnn_mask" ]) # model_path = model.find_last() # # Load trained weights # print("Loading weights from ", model_path) # model.load_weights(model_path, by_name=True) model.train(dataset_train, dataset_val, learning_rate=config.LEARNING_RATE, epochs=70, augmentation=augmentation, save_best_only=True, monitored_quantity='val_mrcnn_mask_loss', layers='all')
def getNotifications(type): params = getParams(type) collectionRef = db.collection('{}-notifications'.format(type)) account = getAccount(type) browser = login(type, account) browser.open(params['notifsUrl']) soup = browser.parsed ul = soup.find('ul', attrs={'class': 'timeline'}) if not ul: raise ValueError("Couldn't open Notifications page") li_time_label = ul.find_all('li', attrs={'class': 'time-label'}) div_timeline_item = ul.find_all('div', attrs={'class': 'timeline-item'}) for i in range(len(li_time_label)): date = li_time_label[i].text.strip(' \t\n\r') time = div_timeline_item[i].span.text.strip(' \t\n\r').replace( ' ', '').replace(';', '') heading = div_timeline_item[i].find('h4', attrs={ 'class': 'timeline-header' }).text.strip(' \t\n\r') body = div_timeline_item[i].find('div', attrs={ 'class': 'timeline-body' }).text poster = div_timeline_item[i].find('h3', attrs={ 'class': 'timeline-header up' }).text.strip(' \t\n\r') poster = poster[len('Posted by : \n \n '):] key = '{} : {} : {}'.format(getHash(date + time + heading + body[:5]), date, time) docRef = collectionRef.document(key) if not docRef.get().exists: docRef.set({ 'key': key, 'date': date, 'time': time, 'heading': heading, 'body': body, 'poster': poster }) sendMessage(label=type, message=notificationTemplate(date, time, heading, body, poster)) return '{} notifications parsed'.format(type)
def login(type, account): params = getParams(type) browser = RoboBrowser(history=True, parser='html.parser') browser.open(params['loginUrl']) form = browser.get_form(0) if not form: raise ValueError("Couldn't login") form[params['username_field']].value = account['username'] form[params['password_field']].value = account['password'] browser.submit_form(form) browser.open(params['notifsUrl']) soup = browser.parsed ul = soup.find('ul', attrs={'class': 'timeline'}) return True if ul else False
def findAccount(type): params = getParams(type) branches = [ 'CO', 'SE', 'IT', 'EC', 'EL', 'EE', 'CE', 'PS', 'BT', 'EP', 'MC', 'ME', 'AM', 'PE', 'EN' ] for branch in branches: for i in range(1, 100): rollno = '00' + str(i) if i < 10 else '0' + str(i) account = { 'username': params['year'] + '/' + branch + '/' + rollno, 'password': '******' } print("Trying with account: {}".format(account['username'])) if login(type, account): return account
def login(type, account): params = getParams(type) browser = RoboBrowser(history=True, parser='html.parser') browser.open(params['loginUrl']) form = browser.get_form(0) if not form: raise ValueError("Couldn't login") form[params['username_field']].value = account['username'] form[params['password_field']].value = account['password'] browser.submit_form(form) browser.open(params['notifsUrl']) print('Logged in with account: {}'.format(account)) return browser
def getJobs(type): params = getParams(type) collectionRef = db.collection('{}-jobs'.format(type)) account = getAccount(type) browser = login(type, account) browser.open(params['jobsUrl']) soup = browser.parsed table_jobopenings = soup.find('table', attrs={'id': 'jobs_search'}) if not table_jobopenings: raise ValueError("Couldn't open jobs page") trs = table_jobopenings.find_all('tr') for i in range(1, len(trs)): tds = trs[i].find_all('td') if tds[3].find('i')['class'][1] == 'fa-check': name = tds[0].text appDeadline = tds[2].text dateOfVisit = tds[6].text link = trs[i]['onclick'].replace("void window.open('", '').replace("')", '') docRef = collectionRef.document(name) if not docRef.get().exists: docRef.set({ 'name': name, 'appDeadline': appDeadline, 'dateOfVisit': dateOfVisit, 'link': link, }) sendMessage(label=type, message=jobTemplate(name, appDeadline, dateOfVisit, link)) return '{} jobs parsed'.format(type)
dataset_train = BrainDataset() dataset_train.load_brain_data('../../data/train/images/*', '../../data/train/masks/*') dataset_train.prepare() dataset_val = BrainDataset() dataset_val.load_brain_data('../../data/test/images/*', '../../data/test/masks/*') dataset_val.prepare() LOG_DIR = os.path.join(ROOT_DIR, 'logs') MODEL_DIR = os.path.join(LOG_DIR, "mask_rcnn") model = modellib.MaskRCNN(mode='training', config=config, model_dir=MODEL_DIR) params = getParams('Mask_RCNN') epochs = params['epochs'] Checkpoint, EarlyStop, ReduceLR, Logger, TenBoard = getCallbacks(params) # COCO_MODEL_PATH = 'mask_rcnn_coco.h5' # model.load_weights(COCO_MODEL_PATH, by_name=True, # exclude=["mrcnn_class_logits", "mrcnn_bbox_fc", # "mrcnn_bbox", "mrcnn_mask"]) # augmentation = iaa.SomeOf((0, 3),[ # iaa.Fliplr(0.5), # iaa.Flipud(0.5), # iaa.OneOf([ # iaa.Affine(rotate=90), # iaa.Affine(rotate=180),
def savePreferences(*args): params.getParams() settings = utility.JsonUtility.createJsonData() utility.JsonUtility.write(storage.prefsFile, settings) utility.setAllMetadata()
"output": False, "n": False, "r": False, "s": False, "h": False, "c": False, "l": False, "i": False, "start": False, "e": False, "missing": False, "all": False, "padding": False } params.getParams(parameters) params.paramsCheck(parameters) cols = 0 # promenna ve ktere uchovavam cislo radku spaces = 0 # promenna ve ktere uchovavam pocet tabulatoru head = [ ] # promenna ve ktere je ulozen prvni radek pokud je aktivni prepinac -h x = 0 # pocitadlo prvku v hlavicce rowCount = int(parameters["start"]) #funkce nahradi problematicke znaky def replace(st): st = st.replace("&", "&").replace("'", "'").replace(