Пример #1
0
 def test_RenameSource(self):
     source = simple.Sphere(guiName='oldName')
     simple.SetActiveSource(source)
     simple.RenameSource('newName')
     # changing the source name should unregister the old name
     self.assertEqual(None, self.pxm.GetProxy('sources', 'oldName'))
     self.assertEqual(source, self.pxm.GetProxy('sources', 'newName'))
     # renaming as the current name should not unregister the source
     simple.RenameSource('newName')
     self.assertEqual(source, self.pxm.GetProxy('sources', 'newName'))
Пример #2
0
    def __init__(self, center=(0, 0, 0), radius=1):
        self.center = center
        self.radius = radius

        self.method = 'vtk.data.add_sphere'
        self.kwargs = {
            'Center': self.center,
            'Radius': self.radius,
        }
        simple.Show(simple.Sphere(**self.kwargs))
        self.id = f"sphere_{self._id}"
        Sphere._id += 1

        super().__init__(type='sphere')
Пример #3
0
    def showSphere(self, params):
        if self.sphere is not None:
            simple.Delete(self.sphere)

        maxDim = max(self.bounds[1] - self.bounds[0],
                     self.bounds[3] - self.bounds[2],
                     self.bounds[5] - self.bounds[4])

        self.sphere = simple.Sphere()
        self.sphere.Radius = maxDim / 100.0
        self.sphere.Center = params['point']
        rep = simple.Show()
        rep.Representation = 'Surface'
        rep.DiffuseColor = params['color']

        simple.SetActiveSource(self.srcObj)
Пример #4
0
        def create_sphere(self,
                          r,
                          center,
                          color_RGB=[1., 1., 1.],
                          phiRes=30,
                          thetaRes=30):
            "Cria uma esfera."
            sphere = pv.Sphere(Radius=r,
                               PhiResolution=phiRes,
                               ThetaResolution=thetaRes)
            sphere.Center = center

            disp = pv.Show()
            disp.DiffuseColor = color_RGB

            self.id_ += 1
            self.objects_[self.id_] = sphere

            return self.id_
Пример #5
0
def runTest():

    options = servermanager.vtkProcessModule.GetProcessModule().GetOptions()
    url = options.GetServerURL()

    smp.Connect(getHost(url), getPort(url))

    sphere = smp.Sphere()

    f = smp.ProgrammableFilter(sphere)

    # test that vtk is imported automatically and contains the name vtkPolyData
    script = 'assert vtk.vtkPolyData'
    assert testScript(f, script)

    # test that variables can be passed using the Parameters property
    script = 'assert foo == "bar"'
    f.SetPropertyWithName('Parameters', ['foo', '"bar"'])
    assert testScript(f, script)

    smp.Disconnect()
    def initialize(self):
        # Bring used components
        self.registerVtkWebProtocol(pv_protocols.ParaViewWebMouseHandler())
        self.registerVtkWebProtocol(
            pv_protocols.ParaViewWebViewPort(
                MultiViewServer.viewportScale,
                MultiViewServer.viewportMaxWidth,
                MultiViewServer.viewportMaxHeight))
        self.registerVtkWebProtocol(
            pv_protocols.ParaViewWebPublishImageDelivery(decode=False))

        # Update authentication key to use
        self.updateSecret(MultiViewServer.authKey)

        # tell the C++ web app to use no encoding. ParaViewWebPublishImageDelivery must be set to decode=False to match.
        self.getApplication().SetImageEncoding(0)

        # Create of 2 views with different content
        self.registerVtkWebProtocol(
            UserProtocol(
                [self.addView(simple.Cone()),
                 self.addView(simple.Sphere())]))
Пример #7
0
def runTest():
    options = servermanager.vtkRemotingCoreConfiguration.GetInstance()
    url = options.GetServerURL()
    smp.Connect(getHost(url), getPort(url))

    r = smp.CreateRenderView()
    r.RemoteRenderThreshold = 20
    s = smp.Sphere()
    s.PhiResolution = 80
    s.ThetaResolution = 80

    d = smp.Show()
    d.Representation = "Wireframe"
    smp.Render()
    r.RemoteRenderThreshold = 0
    smp.Render()
    s.PhiResolution = 8
    s.ThetaResolution = 8
    smp.Render()

    smtesting.ProcessCommandLineArguments()
    if not smtesting.DoRegressionTesting(r.SMProxy):
        raise smtesting.TestError ("Test failed!!!")
    print ("Test Passed")
Пример #8
0
from paraview import simple

import tonic
from tonic.paraview.dataset_builder import *

dataset_destination_path = '/Users/seb/Desktop/mpi-sphere'

sphere = simple.Sphere()

rep = simple.Show()
simple.ColorBy(rep, ('POINTS', 'vtkProcessId'))

view = simple.Render()
view.ResetCamera()

rep.RescaleTransferFunctionToDataRange(True)

phi = range(0, 360, 10)
theta = range(-60, 61, 10)
dh = ImageDataSetBuilder(dataset_destination_path, 'image/jpg', {
    'type': 'spherical',
    'phi': phi,
    'theta': theta
})

dh.start(view)
dh.writeImages()
dh.stop()
Пример #9
0
rvs4.AxesGrid.Visibility = 1
#rvs4.AxesGrid.AxesToLabel = 5
rvs4.AxesGrid.GridColor = [0.8, 0.8, 0.8]
rvs4.AxesGrid.ShowGrid = 1
rvs4.AxesGrid.XLabelColor = [0.2, 0.2, 0.2]
rvs4.AxesGrid.XTitleColor = [0.2, 0.2, 0.2]
rvs4.AxesGrid.ZLabelColor = [0.2, 0.2, 0.2]
rvs4.AxesGrid.ZTitleColor = [0.2, 0.2, 0.2]
rvs4.AxesGrid.YLabelColor = [0.2, 0.2, 0.2]
rvs4.AxesGrid.YTitleColor = [0.2, 0.2, 0.2]
rvs4.OrientationAxesVisibility = 0
rvs4.ViewSize = [1920*5, 1280*5]
rvs4.Background = [1.0, 1.0, 1.0]

# create a sphere to represent Earth
earth = pv.Sphere()
earth.Radius = RE_el
earth.ThetaResolution = 128
earth.PhiResolution = 128

earth_disp4 = pv.Show(earth, rvs4)
earth_disp4.DiffuseColor = [0.51, 0.51, 0.51]

# display check lines
for key in t96_K0_ds2.field_lines:
    if t96_K0_ds2.field_lines[key] is None:
        continue
    forward = pv.Show(t96_K0_ds2.field_lines[key].fieldLineObj_f, rvs4)
    forward.DiffuseColor = [1, 0.0, 0.0]
    forward.LineWidth = 2.0
Пример #10
0
# This is how you can run this script:
# mpiexec -n NUM_PROCS pvbatch Test_Parallel.py

import paraview.simple as pv
import paraview.servermanager as pvserver

num_partitions = pvserver.ActiveConnection.GetNumberOfDataPartitions()
print("Rendering {} data partitions".format(num_partitions))

sphere = pv.Sphere()
pids = pv.ProcessIdScalars()

rep = pv.Show()
lut = pv.GetLookupTableForArray(
    "ProcessId",
    1,
    RGBPoints=[0.0, 0.23, 0.3, 0.754, num_partitions, 0.706, 0.016, 0.15],
    ColorSpace='Diverging')
rep.LookupTable = lut
rep.ColorArrayName = 'ProcessId'

pv.Render()
pv.WriteImage('Parallel.png')
print(
    "Rendering done. You should find an image file named `Parallel.png` that shows a sphere. The sphere should be divided into wedges that are color-coded by processor."
)
Пример #11
0
rv.AxesGrid.XTitleColor = [0.2, 0.2, 0.2]
rv.AxesGrid.ZLabelColor = [0.2, 0.2, 0.2]
rv.AxesGrid.ZTitleColor = [0.2, 0.2, 0.2]
rv.OrientationAxesVisibility = 0

# rv.ViewSize = [1280*3, 600*3]
rv.ViewSize = [1280, 600]

td = pv.Show(t96_128_dp, view=rv)
td.DiffuseColor = [0.0, 0.0, 0.0]
td.EdgeColor = [0.0, 0.0, 0.0]
td.AmbientColor = [0.0, 0.0, 0.0]


# create a sphere to represent Earth
earth = pv.Sphere()
earth.Radius = 1.0
earth.ThetaResolution = 128
earth.PhiResolution = 128
earth_disp = pv.Show(earth, rv)
earth_disp.DiffuseColor = [0.0, 0.3333333333333333, 0.0]

# create test field line
fline = fl.fieldLine(t96_128_dp, start=[-10.0,0.0,0.0])
forward = pv.Show(fline.fieldLineObj_f,rv)
backward = pv.Show(fline.fieldLineObj_b,rv)
forward.DiffuseColor = [0.5, 0.0, 0.0]
backward.DiffuseColor = [0., 0.0, 0.5]

# Mark New Center (Should be B_min)
new_center = fline.fieldLinePoints_f[0]
Пример #12
0
        def createPipeline(self):
            self.renderView = pvsimple.CreateRenderView()

            pvsimple.Sphere()
            pvsimple.Show()
Пример #13
0
rvs4.CameraParallelScale = 50
rvs4.AxesGrid.Visibility = 1
rvs4.AxesGrid.GridColor = [0.8, 0.8, 0.8]
rvs4.AxesGrid.ShowGrid = 1
rvs4.AxesGrid.XLabelColor = [0.2, 0.2, 0.2]
rvs4.AxesGrid.XTitleColor = [0.2, 0.2, 0.2]
rvs4.AxesGrid.ZLabelColor = [0.2, 0.2, 0.2]
rvs4.AxesGrid.ZTitleColor = [0.2, 0.2, 0.2]
rvs4.AxesGrid.YLabelColor = [0.2, 0.2, 0.2]
rvs4.AxesGrid.YTitleColor = [0.2, 0.2, 0.2]
rvs4.OrientationAxesVisibility = 0
rvs4.ViewSize = [1920, 1280]
rvs4.Background = [1.0, 1.0, 1.0]

# create a sphere to represent Earth
earth = pv.Sphere()
earth.Radius = 1.0
earth.ThetaResolution = 128
earth.PhiResolution = 128

earth_disp4 = pv.Show(earth, rvs4)
earth_disp4.DiffuseColor = [0.51, 0.51, 0.51]

L_Text = pv.Text()
L_Text.Text = "$L^*=$ " + str(L_100)
Ldisp = pv.Show(L_Text, rvs4)
Ldisp.WindowLocation = 'LowerCenter'

for key in t96_K0_ds.field_lines:
    if t96_K0_ds.field_lines[key] is None:
        continue
Пример #14
0
rvs.CameraViewUp = [0, 0, 1]
rvs.CameraParallelScale = 11
rvs.AxesGrid.Visibility = 1
rvs.AxesGrid.AxesToLabel = 5
rvs.AxesGrid.GridColor = [0.8, 0.8, 0.8]
rvs.AxesGrid.ShowGrid = 1
rvs.AxesGrid.XLabelColor = [0.2, 0.2, 0.2]
rvs.AxesGrid.XTitleColor = [0.2, 0.2, 0.2]
rvs.AxesGrid.ZLabelColor = [0.2, 0.2, 0.2]
rvs.AxesGrid.ZTitleColor = [0.2, 0.2, 0.2]
rvs.OrientationAxesVisibility = 0
rvs.ViewSize = [1920, 1280]
rvs.Background = [1.0, 1.0, 1.0]

# create a sphere to represent Earth
earth = pv.Sphere()
earth.Radius = 1.0
earth.ThetaResolution = 128
earth.PhiResolution = 128
earth_disp = pv.Show(earth, rvs)
earth_disp.DiffuseColor = [0.0, 0.3333333333333333, 0.0]

for start_p in start_positions:
    print "Starting Postion: {}".format(start_p)
    # get field lines and  integrals
    flines[start_p] = fl.fieldLine(t96_128, start=start_p)
    i_integral[start_p] = flines[start_p].get_i_integrals()

    # make field line plots
    dsp[start_p] = pv.Show(t96_128, view=rvs)
    dsp[start_p].CubeAxesVisibility = 0
Пример #15
0
# 1. Create a virtual environment with ParaView's Python:
#    ```
#    path/to/paraview/install/python3 -m venv ./env
#    ```
# 2. Install `h5py` in the environment **using ParaView's HDF5**:
#    ```
#    . ./env/bin/activate
#    HDF5_DIR=path/to/paraview/install/ pip install --no-binary=h5py h5py
#    ```
#    Note that the `HDF5_DIR` should have `include` and `lib` directories with ParaView's HDF5.
# 3. Set the path below to `path/to/env/lib/python3.7/site-packages`
extra_packages_path = '/data/home/nfischer/test-paraview/env/lib/python3.7/site-packages'
# Then, this is how you can run this script:
# pvpython Test_H5.py

import paraview.simple as pv

import sys
sys.path.append(extra_packages_path)

import h5py

pv.Sphere()

pv.Show()

pv.SaveScreenshot("H5.png")
print(
    "Rendering done. You should find an image file named `H5.png` that shows a sphere."
)
# get the proxy manager.
smpxm = c.Session.GetSessionProxyManager()

#==============================================================================
# create a proxy and confirm we can obtain a class for it.
sphere = smpxm.NewProxy("sources", "SphereSource")
sphere.UnRegister(None)

cls = c.ProxiesNS.getClass(sphere)
assert cls is not None
assert type(getattr(cls, "Radius")) == property

# let's create another proxy of the same type using a different route and
# confirm the same class type is returned.
sphere2 = simple.Sphere()
sphere3 = simple.Sphere()
assert sphere2.__class__ == cls
assert sphere3.__class__ == cls

#==============================================================================
# now, confirm that is two proxies with same name but different groups are created
# we get different classes for each. This avoids issues like #20672.
p1 = smpxm.NewProxy("extract_writers", "PNG")
p1.UnRegister(None)
cls1 = c.ProxiesNS.getClass(p1)

p2 = smpxm.NewProxy("animation_writers", "PNG")
p2.UnRegister(None)
cls2 = c.ProxiesNS.getClass(p2)
    arrayName = str(random.random())
    programmableFilter.Script = script + textwrap.dedent('''
        passedArray = vtk.vtkIntArray()
        passedArray.SetName('%s')
        self.GetOutput().GetFieldData().AddArray(passedArray)''' % arrayName)

    programmableFilter.UpdatePipeline()
    return programmableFilter.GetClientSideObject().GetOutput().GetFieldData(
    ).GetArray(arrayName) is not None


SMPythonTesting.ProcessCommandLineArguments()
tempDir = SMPythonTesting.TempDir
stateDir = SMPythonTesting.SMStatesDir

sphere = smp.Sphere()

f = smp.ProgrammableFilter(sphere)

script = '''
assert 1+1 == 2
'''

assert testScript(f, script)

script = '''
assert foo == 'bar'
'''

f.SetPropertyWithName('Parameters', ['foo', '"bar"'])
Пример #18
0
rvs4.AxesGrid.Visibility = 1
#rvs4.AxesGrid.AxesToLabel = 5
rvs4.AxesGrid.GridColor = [0.8, 0.8, 0.8]
rvs4.AxesGrid.ShowGrid = 1
rvs4.AxesGrid.XLabelColor = [0.2, 0.2, 0.2]
rvs4.AxesGrid.XTitleColor = [0.2, 0.2, 0.2]
rvs4.AxesGrid.ZLabelColor = [0.2, 0.2, 0.2]
rvs4.AxesGrid.ZTitleColor = [0.2, 0.2, 0.2]
rvs4.AxesGrid.YLabelColor = [0.2, 0.2, 0.2]
rvs4.AxesGrid.YTitleColor = [0.2, 0.2, 0.2]
rvs4.OrientationAxesVisibility = 0
rvs4.ViewSize = [1920, 1280]
rvs4.Background = [1.0, 1.0, 1.0]

# create a sphere to represent Earth
earth = pv.Sphere()
earth.Radius = 1.0
earth.ThetaResolution = 128
earth.PhiResolution = 128
earth_disp = pv.Show(earth, rvs)
earth_disp2 = pv.Show(earth, rvs2)
earth_disp3 = pv.Show(earth, rvs3)
earth_disp4 = pv.Show(earth, rvs4)
earth_disp4.DiffuseColor = [0.81, 0.81, 0.81]
earth_disp3.DiffuseColor = [0.333, 0.333, 0.333]
earth_disp2.DiffuseColor = [0.333, 0.333, 0.333]
earth_disp.DiffuseColor = [0.333, 0.333, 0.333]

Bmag_calc = pv.Calculator(Input=t96)
Bmag_calc.ResultArrayName = 'Bmag'
Bmag_calc.Function = 'mag(B)'
Пример #19
0
pl.title("Field Line Geometry Integral $I$ with respect to $B_{mirror}$ \n For Field line that passes through (-40, 0, 0)")
fig1.savefig("IwrtBm.png")

# Create a paraview render view so we can see visual progress.
# pv._DisableFirstRenderCameraReset()
rv128 = pv.CreateRenderView()
rv128.InteractionMode = '2D'
rv128.CameraPosition = [0, -30, 0]
rv128.CameraViewUp = [0, 0, 1]
rv128.CameraParallelScale = 10
rv128.ViewSize = [1280, 1024]
dipoleDisplay = pv.GetDisplayProperties(dipole128, view=rv128)
# pv.Hide(dipole128, view=rv128)

# create a new 'Sphere'
sphere1 = pv.Sphere()
sphere1.Radius = 1.0
sphere1.ThetaResolution = 64
sphere1.PhiResolution = 64
pv.Show(sphere1, rv128)

# get field line

forward = pv.Show(fline.fieldLineObj_f,rv128)
backward = pv.Show(fline.fieldLineObj_b,rv128)
forward.DiffuseColor = [0.6666666666666666, 0.0, 0.0]
backward.DiffuseColor = [0., 0., 0.66]


# Find B_min
Bmin_loc, Bmin_val = fline.get_field_min()
Пример #20
0
 def makeSphere():
     smp.Sphere()
     smp.Show()
     smp.ResetCamera()
     smp.Render()
Пример #21
0
def render_frames(
    scene,
    frames_dir=None,
    frame_window=None,
    render_missing_frames=False,
    save_state_to_file=None,
    no_render=False,
    show_preview=False,
    show_progress=False,
    job_id=None,
):
    # Validate scene
    if scene["View"]["ViewSize"][0] % 16 != 0:
        logger.warning(
            "The view width should be a multiple of 16 to be compatible with"
            " QuickTime.")
    if scene["View"]["ViewSize"][1] % 2 != 0:
        logger.warning(
            "The view height should be even to be compatible with QuickTime.")

    render_start_time = time.time()

    # Setup layout
    layout = pv.CreateLayout("Layout")

    # Setup view
    if "Background" in scene["View"]:
        bg_config = scene["View"]["Background"]
        del scene["View"]["Background"]
        if isinstance(bg_config, list):
            if isinstance(bg_config[0], list):
                assert len(bg_config) == 2, (
                    "When 'Background' is a list of colors, it must have 2"
                    " entries.")
                bg_config = dict(
                    BackgroundColorMode="Gradient",
                    Background=parse_as.color(bg_config[0]),
                    Background2=parse_as.color(bg_config[1]),
                )
            else:
                bg_config = dict(
                    BackgroundColorMode="Single Color",
                    Background=parse_as.color(bg_config),
                )
            bg_config["UseColorPaletteForBackground"] = 0
            scene["View"].update(bg_config)
            bg_config = None
    else:
        bg_config = None
    view = pv.CreateRenderView(**scene["View"])
    pv.AssignViewToLayout(view=view, layout=layout, hint=0)

    # Set spherical background texture
    if bg_config is not None:
        bg_config["BackgroundColorMode"] = "Texture"
        skybox_datasource = bg_config["Datasource"]
        del bg_config["Datasource"]
        background_texture = pvserver.rendering.ImageTexture(
            FileName=parse_as.path(scene["Datasources"][skybox_datasource]))
        background_sphere = pv.Sphere(Radius=bg_config["Radius"],
                                      ThetaResolution=100,
                                      PhiResolution=100)
        background_texture_map = pv.TextureMaptoSphere(Input=background_sphere)
        pv.Show(
            background_texture_map,
            view,
            Texture=background_texture,
            BackfaceRepresentation="Cull Frontface",
            Ambient=1.0,
        )

    # Load the waveform data file
    waveform_h5file, waveform_subfile = parse_as.file_and_subfile(
        scene["Datasources"]["Waveform"])
    waveform_data = WaveformDataReader(FileName=waveform_h5file,
                                       Subfile=waveform_subfile)
    pv.UpdatePipeline()

    # Generate volume data from the waveform. Also sets the available time range.
    # TODO: Pull KeepEveryNthTimestep out of datasource
    waveform_to_volume_configs = scene["WaveformToVolume"]
    if isinstance(waveform_to_volume_configs, dict):
        waveform_to_volume_configs = [{
            "Object": waveform_to_volume_configs,
        }]
        if "VolumeRepresentation" in scene:
            waveform_to_volume_configs[0]["VolumeRepresentation"] = scene[
                "VolumeRepresentation"]
    waveform_to_volume_objects = []
    for waveform_to_volume_config in waveform_to_volume_configs:
        volume_data = WaveformToVolume(
            WaveformData=waveform_data,
            SwshCacheDirectory=parse_as.path(
                scene["Datasources"]["SwshCache"]),
            **waveform_to_volume_config["Object"],
        )
        if "Modes" in waveform_to_volume_config["Object"]:
            volume_data.Modes = waveform_to_volume_config["Object"]["Modes"]
        if "Polarizations" in waveform_to_volume_config["Object"]:
            volume_data.Polarizations = waveform_to_volume_config["Object"][
                "Polarizations"]
        waveform_to_volume_objects.append(volume_data)

    # Compute timing and frames information
    time_range_in_M = (
        volume_data.TimestepValues[0],
        volume_data.TimestepValues[-1],
    )
    logger.debug(f"Full available data time range: {time_range_in_M} (in M)")
    if "FreezeTime" in scene["Animation"]:
        frozen_time = scene["Animation"]["FreezeTime"]
        logger.info(f"Freezing time at {frozen_time}.")
        view.ViewTime = frozen_time
        animation = None
    else:
        if "Crop" in scene["Animation"]:
            time_range_in_M = scene["Animation"]["Crop"]
            logger.debug(f"Cropping time range to {time_range_in_M} (in M).")
        animation_speed = scene["Animation"]["Speed"]
        frame_rate = scene["Animation"]["FrameRate"]
        num_frames = animate.num_frames(
            max_animation_length=time_range_in_M[1] - time_range_in_M[0],
            animation_speed=animation_speed,
            frame_rate=frame_rate,
        )
        animation_length_in_seconds = num_frames / frame_rate
        animation_length_in_M = animation_length_in_seconds * animation_speed
        time_per_frame_in_M = animation_length_in_M / num_frames
        logger.info(f"Rendering {animation_length_in_seconds:.2f}s movie with"
                    f" {num_frames} frames ({frame_rate} FPS or"
                    f" {animation_speed:.2e} M/s or"
                    f" {time_per_frame_in_M:.2e} M/frame)...")
        if frame_window is not None:
            animation_window_num_frames = frame_window[1] - frame_window[0]
            animation_window_time_range = (
                time_range_in_M[0] + frame_window[0] * time_per_frame_in_M,
                time_range_in_M[0] +
                (frame_window[1] - 1) * time_per_frame_in_M,
            )
            logger.info(
                f"Restricting rendering to {animation_window_num_frames} frames"
                f" (numbers {frame_window[0]} to {frame_window[1] - 1}).")
        else:
            animation_window_num_frames = num_frames
            animation_window_time_range = time_range_in_M
            frame_window = (0, num_frames)

        # Setup animation so that sources can retrieve the `UPDATE_TIME_STEP`
        animation = pv.GetAnimationScene()
        # animation.UpdateAnimationUsingDataTimeSteps()
        # Since the data can be evaluated at arbitrary times we define the time steps
        # here by setting the number of frames within the full range
        animation.PlayMode = "Sequence"
        animation.StartTime = animation_window_time_range[0]
        animation.EndTime = animation_window_time_range[1]
        animation.NumberOfFrames = animation_window_num_frames
        logger.debug(
            f"Animating from scene time {animation.StartTime} to"
            f" {animation.EndTime} in {animation.NumberOfFrames} frames.")

        def scene_time_from_real(real_time):
            return (real_time / animation_length_in_seconds *
                    animation_length_in_M)

        # For some reason the keyframe time for animations is expected to be within
        # (0, 1) so we need to transform back and forth from this "normalized" time
        def scene_time_from_normalized(normalized_time):
            return animation.StartTime + normalized_time * (
                animation.EndTime - animation.StartTime)

        def normalized_time_from_scene(scene_time):
            return (scene_time - animation.StartTime) / (animation.EndTime -
                                                         animation.StartTime)

        # Setup progress measuring already here so volume data computing for
        # initial frame is measured
        if show_progress and not no_render:
            logging.getLogger().handlers = [TqdmLoggingHandler()]
            animation_window_frame_range = tqdm.trange(
                animation_window_num_frames,
                desc="Rendering",
                unit="frame",
                miniters=1,
                position=job_id,
            )
        else:
            animation_window_frame_range = range(animation_window_num_frames)

        # Set the initial time step
        animation.GoToFirst()

    # Display the volume data. This will trigger computing the volume data at the
    # current time step.
    for volume_data, waveform_to_volume_config in zip(
            waveform_to_volume_objects, waveform_to_volume_configs):
        vol_repr = (waveform_to_volume_config["VolumeRepresentation"]
                    if "VolumeRepresentation" in waveform_to_volume_config else
                    {})
        volume_color_by = config_color.extract_color_by(vol_repr)
        if (vol_repr["VolumeRenderingMode"] == "GPU Based"
                and len(volume_color_by) > 2):
            logger.warning(
                "The 'GPU Based' volume renderer doesn't support multiple"
                " components.")
        volume = pv.Show(volume_data, view, **vol_repr)
        pv.ColorBy(volume, value=volume_color_by)

    if "Slices" in scene:
        for slice_config in scene["Slices"]:
            slice_obj_config = slice_config.get("Object", {})
            slice = pv.Slice(Input=volume_data)
            slice.SliceType = "Plane"
            slice.SliceOffsetValues = [0.0]
            slice.SliceType.Origin = slice_obj_config.get(
                "Origin", [0.0, 0.0, -0.3])
            slice.SliceType.Normal = slice_obj_config.get(
                "Normal", [0.0, 0.0, 1.0])
            slice_rep = pv.Show(slice, view,
                                **slice_config.get("Representation", {}))
            pv.ColorBy(slice_rep, value=volume_color_by)

    # Display the time
    if "TimeAnnotation" in scene:
        time_annotation = pv.AnnotateTimeFilter(volume_data,
                                                **scene["TimeAnnotation"])
        pv.Show(time_annotation, view, **scene["TimeAnnotationRepresentation"])

    # Add spheres
    if "Spheres" in scene:
        for sphere_config in scene["Spheres"]:
            sphere = pv.Sphere(**sphere_config["Object"])
            pv.Show(sphere, view, **sphere_config["Representation"])

    # Add trajectories and objects that follow them
    if "Trajectories" in scene:
        for trajectory_config in scene["Trajectories"]:
            trajectory_name = trajectory_config["Name"]
            radial_scale = (trajectory_config["RadialScale"]
                            if "RadialScale" in trajectory_config else 1.0)
            # Load the trajectory data
            traj_data_reader = TrajectoryDataReader(
                RadialScale=radial_scale,
                **scene["Datasources"]["Trajectories"][trajectory_name],
            )
            # Make sure the data is loaded so we can retrieve timesteps.
            # TODO: This should be fixed in `TrajectoryDataReader` by
            # communicating time range info down the pipeline, but we had issues
            # with that (see also `WaveformDataReader`).
            traj_data_reader.UpdatePipeline()
            if "Objects" in trajectory_config:
                with animate.restore_animation_state(animation):
                    follow_traj = FollowTrajectory(
                        TrajectoryData=traj_data_reader)
                for traj_obj_config in trajectory_config["Objects"]:
                    for traj_obj_key in traj_obj_config:
                        if traj_obj_key in [
                                "Representation",
                                "Visibility",
                                "TimeShift",
                                "Glyph",
                        ]:
                            continue
                        traj_obj_type = getattr(pv, traj_obj_key)
                        traj_obj_glyph = traj_obj_type(
                            **traj_obj_config[traj_obj_key])
                    follow_traj.UpdatePipeline()
                    traj_obj = pv.Glyph(Input=follow_traj,
                                        GlyphType=traj_obj_glyph)
                    # Can't set this in the constructor for some reason
                    traj_obj.ScaleFactor = 1.0
                    for glyph_property in (traj_obj_config["Glyph"] if "Glyph"
                                           in traj_obj_config else []):
                        setattr(
                            traj_obj,
                            glyph_property,
                            traj_obj_config["Glyph"][glyph_property],
                        )
                    traj_obj.UpdatePipeline()
                    if "TimeShift" in traj_obj_config:
                        traj_obj = animate.apply_time_shift(
                            traj_obj, traj_obj_config["TimeShift"])
                    pv.Show(traj_obj, view,
                            **traj_obj_config["Representation"])
                    if "Visibility" in traj_obj_config:
                        animate.apply_visibility(
                            traj_obj,
                            traj_obj_config["Visibility"],
                            normalized_time_from_scene,
                            scene_time_from_real,
                        )
            if "Tail" in trajectory_config:
                with animate.restore_animation_state(animation):
                    traj_tail = TrajectoryTail(TrajectoryData=traj_data_reader)
                if "TimeShift" in trajectory_config:
                    traj_tail = animate.apply_time_shift(
                        traj_tail, trajectory_config["TimeShift"])
                tail_config = trajectory_config["Tail"]
                traj_color_by = config_color.extract_color_by(tail_config)
                if "Visibility" in tail_config:
                    tail_visibility_config = tail_config["Visibility"]
                    del tail_config["Visibility"]
                else:
                    tail_visibility_config = None
                tail_rep = pv.Show(traj_tail, view, **tail_config)
                pv.ColorBy(tail_rep, value=traj_color_by)
                if tail_visibility_config is not None:
                    animate.apply_visibility(
                        traj_tail,
                        tail_visibility_config,
                        normalized_time_from_scene=normalized_time_from_scene,
                        scene_time_from_real=scene_time_from_real,
                    )
            if "Move" in trajectory_config:
                move_config = trajectory_config["Move"]
                logger.debug(
                    f"Animating '{move_config['guiName']}' along trajectory.")
                with h5py.File(trajectory_file, "r") as traj_data_file:
                    trajectory_data = np.array(
                        traj_data_file[trajectory_subfile])
                if radial_scale != 1.0:
                    trajectory_data[:, 1:] *= radial_scale
                logger.debug(f"Trajectory data shape: {trajectory_data.shape}")
                animate.follow_path(
                    gui_name=move_config["guiName"],
                    trajectory_data=trajectory_data,
                    num_keyframes=move_config["NumKeyframes"],
                    scene_time_range=time_range_in_M,
                    normalized_time_from_scene=normalized_time_from_scene,
                )

    # Add non-spherical horizon shapes (instead of spherical objects following
    # trajectories)
    if "Horizons" in scene:
        for horizon_config in scene["Horizons"]:
            with animate.restore_animation_state(animation):
                horizon = pv.PVDReader(FileName=scene["Datasources"]
                                       ["Horizons"][horizon_config["Name"]])
                if horizon_config.get("InterpolateTime", False):
                    horizon = pv.TemporalInterpolator(
                        Input=horizon, DiscreteTimeStepInterval=0)
            if "TimeShift" in horizon_config:
                horizon = animate.apply_time_shift(horizon,
                                                   horizon_config["TimeShift"],
                                                   animation)
            # Try to make horizon surfaces smooth. At low angular resoluton
            # they still show artifacts, so perhaps more can be done.
            horizon = pv.ExtractSurface(Input=horizon)
            horizon = pv.GenerateSurfaceNormals(Input=horizon)
            horizon_rep_config = horizon_config.get("Representation", {})
            if "Representation" not in horizon_rep_config:
                horizon_rep_config["Representation"] = "Surface"
            if "AmbientColor" not in horizon_rep_config:
                horizon_rep_config["AmbientColor"] = [0.0, 0.0, 0.0]
            if "DiffuseColor" not in horizon_rep_config:
                horizon_rep_config["DiffuseColor"] = [0.0, 0.0, 0.0]
            if "Specular" not in horizon_rep_config:
                horizon_rep_config["Specular"] = 0.2
            if "SpecularPower" not in horizon_rep_config:
                horizon_rep_config["SpecularPower"] = 10
            if "SpecularColor" not in horizon_rep_config:
                horizon_rep_config["SpecularColor"] = [1.0, 1.0, 1.0]
            if "ColorBy" in horizon_rep_config:
                horizon_color_by = config_color.extract_color_by(
                    horizon_rep_config)
            else:
                horizon_color_by = None
            horizon_rep = pv.Show(horizon, view, **horizon_rep_config)
            if horizon_color_by is not None:
                pv.ColorBy(horizon_rep, value=horizon_color_by)
            # Animate visibility
            if "Visibility" in horizon_config:
                animate.apply_visibility(
                    horizon,
                    horizon_config["Visibility"],
                    normalized_time_from_scene=normalized_time_from_scene,
                    scene_time_from_real=scene_time_from_real,
                )
            if "Contours" in horizon_config:
                for contour_config in horizon_config["Contours"]:
                    contour = pv.Contour(Input=horizon,
                                         **contour_config["Object"])
                    contour_rep = pv.Show(contour, view,
                                          **contour_config["Representation"])
                    pv.ColorBy(contour_rep, None)
                    if "Visibility" in horizon_config:
                        animate.apply_visibility(
                            contour,
                            horizon_config["Visibility"],
                            normalized_time_from_scene=
                            normalized_time_from_scene,
                            scene_time_from_real=scene_time_from_real,
                        )

    # Configure transfer functions
    if "TransferFunctions" in scene:
        for tf_config in scene["TransferFunctions"]:
            colored_field = tf_config["Field"]
            transfer_fctn = pv.GetColorTransferFunction(colored_field)
            opacity_fctn = pv.GetOpacityTransferFunction(colored_field)
            tf.configure_transfer_function(transfer_fctn, opacity_fctn,
                                           tf_config["TransferFunction"])

    # Save state file before configuring camera keyframes.
    # TODO: Make camera keyframes work with statefile
    if save_state_to_file is not None:
        pv.SaveState(save_state_to_file + ".pvsm")

    # Camera shots
    # TODO: Make this work with freezing time while the camera is swinging
    if animation is None:
        for i, shot in enumerate(scene["CameraShots"]):
            if (i == len(scene["CameraShots"]) - 1 or
                (shot["Time"] if "Time" in shot else 0.0) >= view.ViewTime):
                camera_motion.apply(shot)
                break
    else:
        camera_motion.apply_swings(
            scene["CameraShots"],
            scene_time_range=time_range_in_M,
            scene_time_from_real=scene_time_from_real,
            normalized_time_from_scene=normalized_time_from_scene,
        )

    # Report time
    if animation is not None:
        report_time_cue = pv.PythonAnimationCue()
        report_time_cue.Script = """
def start_cue(self): pass

def tick(self):
    import paraview.simple as pv
    import logging
    logger = logging.getLogger('Animation')
    scene_time = pv.GetActiveView().ViewTime
    logger.info(f"Scene time: {scene_time}")

def end_cue(self): pass
"""
        animation.Cues.append(report_time_cue)

    if show_preview and animation is not None:
        animation.PlayMode = "Real Time"
        animation.Duration = 10
        animation.Play()
        animation.PlayMode = "Sequence"

    if no_render:
        logger.info("No rendering requested. Total time:"
                    f" {time.time() - render_start_time:.2f}s")
        return

    if frames_dir is None:
        raise RuntimeError("Trying to render but `frames_dir` is not set.")
    if os.path.exists(frames_dir):
        logger.warning(
            f"Output directory '{frames_dir}' exists, files may be overwritten."
        )
    else:
        os.makedirs(frames_dir)

    if animation is None:
        pv.Render()
        pv.SaveScreenshot(os.path.join(frames_dir, "frame.png"))
    else:
        # Iterate over frames manually to support filling in missing frames.
        # If `pv.SaveAnimation` would support that, here's how it could be
        # invoked:
        # pv.SaveAnimation(
        #     os.path.join(frames_dir, 'frame.png'),
        #     view,
        #     animation,
        #     FrameWindow=frame_window,
        #     SuffixFormat='.%06d')
        # Note that `FrameWindow` appears to be buggy, so we set up the
        # `animation` according to the `frame_window` above so the frame files
        # are numberd correctly.
        for animation_window_frame_i in animation_window_frame_range:
            frame_i = frame_window[0] + animation_window_frame_i
            frame_file = os.path.join(frames_dir, f"frame.{frame_i:06d}.png")
            if render_missing_frames and os.path.exists(frame_file):
                continue
            logger.debug(f"Rendering frame {frame_i}...")
            animation.AnimationTime = (
                animation.StartTime +
                time_per_frame_in_M * animation_window_frame_i)
            pv.Render()
            pv.SaveScreenshot(frame_file)
            logger.info(f"Rendered frame {frame_i}.")

    logger.info(
        f"Rendering done. Total time: {time.time() - render_start_time:.2f}s")
Пример #22
0
    def test_slice(self):
        pv.Connect()  # using a dedicated server state for each test
        print "\nTEST_SLICE"

        # set up some processing task
        view_proxy = pv.CreateRenderView()
        view_proxy.OrientationAxesVisibility = 0
        s = pv.Sphere()
        sliceFilt = pv.Slice(
            SliceType="Plane", Input=s, SliceOffsetValues=[0.0])
        sliceFilt.SliceType.Normal = [0, 1, 0]
        sliceRep = pv.Show(sliceFilt)

        # make or open a cinema data store to put results in
        fname = "/tmp/test_pv_slice/info.json"
        cs = file_store.FileStore(fname)
        cs.add_metadata({'type': 'parametric-image-stack'})
        cs.add_metadata({'store_type': 'FS'})
        cs.add_metadata({'version': '0.0'})
        cs.filename_pattern = "{phi}_{theta}_{offset}_{color}_slice.png"
        cs.add_parameter(
            "phi", store.make_parameter('phi', [90, 120, 140]))
        cs.add_parameter(
            "theta", store.make_parameter('theta', [-90, -30, 30, 90]))
        cs.add_parameter(
            "offset",
            store.make_parameter('offset', [-.4, -.2, 0, .2, .4]))
        cs.add_parameter(
            "color",
            store.make_parameter(
                'color', ['yellow', 'cyan', "purple"], typechoice='list'))

        colorChoice = pv_explorers.ColorList()
        colorChoice.AddSolidColor('yellow', [1, 1, 0])
        colorChoice.AddSolidColor('cyan', [0, 1, 1])
        colorChoice.AddSolidColor('purple', [1, 0, 1])

        # associate control points with parameters of the data store
        cam = pv_explorers.Camera([0, 0, 0], [0, 1, 0], 10.0, view_proxy)
        filt = pv_explorers.Slice("offset", sliceFilt)
        col = pv_explorers.Color("color", colorChoice, sliceRep)

        params = ["phi", "theta", "offset", "color"]
        e = pv_explorers.ImageExplorer(
            cs, params, [cam, filt, col], view_proxy)
        # run through all parameter combinations and put data into the store
        e.explore()

        # Reproduce an entry and compare vs. loaded

        # First set the parameters to reproduce
        cam.execute(store.Document({'theta': -30, 'phi': 120}))
        filt.execute(store.Document({'offset': -.4}))
        col.execute(store.Document({'color': 'cyan'}))
        imageslice = ch.pvRenderToArray(view_proxy)

        # Now load the corresponding entry
        cs2 = file_store.FileStore(fname)
        cs2.load()
        docs = []
        for doc in cs2.find(
                {'theta': -30, 'phi': 120, 'offset': -.4, 'color': 'cyan'}):
            docs.append(doc.data)

        # print "gen entry: \n",
        #        imageslice, "\n",
        #        imageslice.shape,"\n",
        #        "loaded: \n",
        #        docs[0], "\n",
        #        docs[0].shape
        # compare the two
        l2error = ch.compare_l2(imageslice, docs[0])
        ncc = ch.compare_ncc(imageslice, docs[0])
        self.assertTrue((l2error < 1.0) and (ncc > 0.99))
        pv.Disconnect()  # using a dedicated server state for each test
Пример #23
0
rvs4.AxesGrid.Visibility = 1
#rvs4.AxesGrid.AxesToLabel = 5
rvs4.AxesGrid.GridColor = [0.8, 0.8, 0.8]
rvs4.AxesGrid.ShowGrid = 1
rvs4.AxesGrid.XLabelColor = [0.2, 0.2, 0.2]
rvs4.AxesGrid.XTitleColor = [0.2, 0.2, 0.2]
rvs4.AxesGrid.ZLabelColor = [0.2, 0.2, 0.2]
rvs4.AxesGrid.ZTitleColor = [0.2, 0.2, 0.2]
rvs4.AxesGrid.YLabelColor = [0.2, 0.2, 0.2]
rvs4.AxesGrid.YTitleColor = [0.2, 0.2, 0.2]
rvs4.OrientationAxesVisibility = 0
rvs4.ViewSize = [1920, 1280]
rvs4.Background = [1.0, 1.0, 1.0]

# create a sphere to represent Earth
earth = pv.Sphere()
earth.Radius = 1.0
earth.ThetaResolution = 128
earth.PhiResolution = 128

earth_disp4 = pv.Show(earth, rvs4)
earth_disp4.DiffuseColor = [0.51, 0.51, 0.51]
# pv.Hide(earth,rvs4)

for key in t96_K0_ds2.field_lines:
    if t96_K0_ds2.field_lines[key] is None:
        continue
    forward = pv.Show(t96_K0_ds2.field_lines[key].fieldLineObj_f, rvs4)

    forward.DiffuseColor = [1, 0.0, 0.0]
    forward.LineWidth = 2.0