def twice(*args): 'Run a command twice' argv = [sys.argv[0]] + list(args) print('first time:') parsable(argv) print('second time:') parsable(argv)
@parsable def extract(filename): """Extract code from markdown file.""" TODO() @parsable def annotate(*files): ''' Annotate markdown files with high-latency results of analyst. ''' TODO() @parsable def suggest(filename): ''' Get real-time feedback from low-latency results of analyst. ''' TODO() @parsable def precommit(): """Reformat and annotate all code before a git commit.""" reformat(CORPUS) if __name__ == '__main__': parsable()
npred_held_out, ) for idx in xrange(epochs) ] filename = get_results_filename(shortname, n_test, iters, epochs, schedule, seed) filepath = '%s.json' % (os.path.join(PATH_RESULTS, filename), ) with open(filepath, 'w') as fptr: json.dump( { 'path_dataset': path_dataset, 'n_test': n_test, 'xs_train': xs_train.tolist(), 'ys_train': ys_train.tolist(), 'xs_test': xs_test.tolist(), 'ys_test': ys_test.tolist(), 'xs_probe': xs_probe.tolist(), 'n_iters': iters, 'n_epochs': epochs, 'nprobe_held_in': nprobe_held_in, 'npred_held_in': npred_held_in, 'npred_held_out': npred_held_out, 'seed': seed, 'statistics': statistics, 'schedule': schedule, }, fptr) print filepath if __name__ == '__main__': parsable()
from __future__ import absolute_import from __future__ import division from __future__ import print_function import multiprocessing from parsable import parsable from treecat.config import make_config from treecat.format import guess_schema from treecat.format import import_data from treecat.format import pickle_dump from treecat.format import pickle_load parsable = parsable.Parsable() parsable(guess_schema) parsable(import_data) @parsable def train(dataset_in, ensemble_out, **options): """Train a TreeCat ensemble model on imported data.""" from treecat.training import train_ensemble dataset = pickle_load(dataset_in) table = dataset['table'] tree_prior = dataset['schema']['tree_prior'] config = make_config(**options) ensemble = train_ensemble(table, tree_prior, config) pickle_dump(ensemble, ensemble_out)