# Negative News Articles from 1 to 9 JSON files
    with open(fileName) as json_data:
        d = json.load(json_data)

    rn = d["posts"]

    # go through all posts
    for post in rn:
        p = post["published"]
        m = int(p[5:7])
        if m == 11:
            d = int(p[8:10])
        else:
            d = int(p[8:10]) + 30
        an[d - day] += 1
        social_impact = getSocialData(post)
        an_social[d - day] += social_impact
        #text = post["text"]
        #text = text.encode('ascii','ignore')
        #foundindx = text.findall("Google")
        #print "Relevant Words: " + str(foundindx)
        #print text

out0 = open('negative.txt', 'w')
out0.truncate()

for i in an:
    out0.write(str(i))
    out0.write("\n")
out0.close()
def parseData(negativeFileName, postiveFileName, neutralFileName, numNegativ,
              numPositive, numNeutral):
    days_back = 30
    date_days_ago = datetime.now() - timedelta(days=days_back)
    day = datetime.today().day
    day = 7

    #  array to track number of positive articles by day
    ap = [
        0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
        0, 0, 0, 0, 0, 0, 0, 0, 0
    ]
    ap_social = [
        0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
        0, 0, 0, 0, 0, 0, 0, 0, 0
    ]
    ap_trump = [
        0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
        0, 0, 0, 0, 0, 0, 0, 0, 0
    ]
    ap_clinton = [
        0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
        0, 0, 0, 0, 0, 0, 0, 0, 0
    ]
    ap_election = [
        0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
        0, 0, 0, 0, 0, 0, 0, 0, 0
    ]

    #  array to track number of positive articles by day
    an = [
        0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
        0, 0, 0, 0, 0, 0, 0, 0, 0
    ]
    an_social = [
        0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
        0, 0, 0, 0, 0, 0, 0, 0, 0
    ]
    an_trump = [
        0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
        0, 0, 0, 0, 0, 0, 0, 0, 0
    ]
    an_clinton = [
        0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
        0, 0, 0, 0, 0, 0, 0, 0, 0
    ]
    an_election = [
        0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
        0, 0, 0, 0, 0, 0, 0, 0, 0
    ]

    #  array to track number of positive articles by day
    aa = [
        0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
        0, 0, 0, 0, 0, 0, 0, 0, 0
    ]
    aa_social = [
        0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
        0, 0, 0, 0, 0, 0, 0, 0, 0
    ]
    aa_trump = [
        0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
        0, 0, 0, 0, 0, 0, 0, 0, 0
    ]
    aa_clinton = [
        0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
        0, 0, 0, 0, 0, 0, 0, 0, 0
    ]
    aa_election = [
        0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
        0, 0, 0, 0, 0, 0, 0, 0, 0
    ]

    for x in range(1, numNegativ + 1):
        fileName = negativeFileName + str(x) + '.json'
        print fileName

        # Negative News Articles from 1 to 9 JSON files
        with open(fileName) as json_data:
            d = json.load(json_data)

        rn = d["posts"]

        # go through all posts
        for post in rn:
            p = post["published"]
            m = int(p[5:7])
            if m == 11:
                d = int(p[8:10])
            else:
                d = int(p[8:10]) + 30
            an[d - day] += 1
            social_impact = getSocialData(post)
            an_social[d - day] += social_impact

            # Get text from news object
            text = post["text"]
            text = text.encode('ascii', 'ignore')

            # Search for Trump
            foundindx = text.find("Trump")
            if foundindx > 0:
                an_trump[d - day] += 1

            # Search for Election
            foundindx = text.find("election")
            if foundindx > 0:
                an_election[d - day] += 1

            # Search for Election
            foundindx = text.find("Clinton")
            if foundindx > 0:
                an_clinton[d - day] += 1

    print "Found Trump: " + str(an_trump)
    print "Found Election: " + str(an_election)
    print "Found Election: " + str(an_clinton)

    out0 = open('negative.txt', 'w')
    out0.truncate()
    for i in an:
        out0.write(str(i))
        out0.write("\n")
    out0.close()

    out0 = open('negative_social.txt', 'w')
    out0.truncate()
    for i in an_social:
        out0.write(str(i))
        out0.write("\n")
    out0.close()

    out0 = open('negative_election.txt', 'w')
    out0.truncate()
    for i in an_election:
        out0.write(str(i))
        out0.write("\n")
    out0.close()

    out0 = open('negative_trump.txt', 'w')
    out0.truncate()
    for i in an_trump:
        out0.write(str(i))
        out0.write("\n")
    out0.close()

    out0 = open('negative_clinton.txt', 'w')
    out0.truncate()
    for i in an_clinton:
        out0.write(str(i))
        out0.write("\n")
    out0.close()

    for x in range(1, numNeutral + 1):
        fileName = neutralFileName + str(x) + '.json'
        print fileName

        # calculate total number of neutral articles by day
        with open(fileName) as json_data:
            d = json.load(json_data)

        ra = d["posts"]

        for post in ra:
            p = post["published"]
            m = int(p[5:7])
            if m == 11:
                d = int(p[8:10])
            else:
                d = int(p[8:10]) + 30
            aa[d - day] += 1
            social_impact = getSocialData(post)
            an_social[d - day] += social_impact

            # Get text from news object
            text = post["text"]
            text = text.encode('ascii', 'ignore')

            # Search for Trump
            foundindx = text.find("Trump")
            if foundindx > 0:
                aa_trump[d - day] += 1

            # Search for Election
            foundindx = text.find("election")
            if foundindx > 0:
                aa_election[d - day] += 1

            # Search for Election
            foundindx = text.find("Clinton")
            if foundindx > 0:
                aa_clinton[d - day] += 1

    print "Found Trump: " + str(aa_trump)
    print "Found Election: " + str(aa_election)
    print "Found Clinton: " + str(aa_clinton)

    out0 = open('all.txt', 'w')
    out0.truncate()
    for i in aa:
        out0.write(str(i))
        out0.write("\n")
    out0.close()

    out0 = open('all_social.txt', 'w')
    out0.truncate()
    for i in aa_social:
        out0.write(str(i))
        out0.write("\n")
    out0.close()

    out0 = open('all_election.txt', 'w')
    out0.truncate()
    for i in aa_election:
        out0.write(str(i))
        out0.write("\n")
    out0.close()

    out0 = open('all_trump.txt', 'w')
    out0.truncate()
    for i in aa_trump:
        out0.write(str(i))
        out0.write("\n")
    out0.close()

    out0 = open('all_clinton.txt', 'w')
    out0.truncate()
    for i in aa_clinton:
        out0.write(str(i))
        out0.write("\n")
    out0.close()

    for x in range(1, numPositive + 1):
        fileName = postiveFileName + str(x) + '.json'
        print fileName

        # calculates number of positive articles per day, from the last 30 days
        with open(fileName) as json_data:
            d = json.load(json_data)

        rp = d["posts"]

        for post in rp:
            p = post["published"]
            m = int(p[5:7])
            if m == 11:
                d = int(p[8:10])
            else:
                d = int(p[8:10]) + 30
            ap[d - day] += 1
            social_impact = getSocialData(post)
            an_social[d - day] += social_impact

            # Get text from news object
            text = post["text"]
            text = text.encode('ascii', 'ignore')

            # Search for Trump
            foundindx = text.find("Trump")
            if foundindx > 0:
                ap_trump[d - day] += 1

            # Search for Election
            foundindx = text.find("election")
            if foundindx > 0:
                ap_election[d - day] += 1

            # Search for Election
            foundindx = text.find("Clinton")
            if foundindx > 0:
                ap_clinton[d - day] += 1

    print "Found Trump: " + str(ap_trump)
    print "Found Election: " + str(ap_election)
    print "Found Clinton: " + str(ap_clinton)

    out1 = open('positive.txt', 'w')
    out1.truncate()
    for i in ap:
        out1.write(str(i))
        out1.write("\n")
    out1.close()

    out1 = open('positive_social.txt', 'w')
    out1.truncate()
    for i in ap_social:
        out1.write(str(i))
        out1.write("\n")
    out1.close()

    out1 = open('positive_election.txt', 'w')
    out1.truncate()
    for i in ap_election:
        out1.write(str(i))
        out1.write("\n")
    out1.close()

    out1 = open('positive_trump.txt', 'w')
    out1.truncate()
    for i in ap_trump:
        out1.write(str(i))
        out1.write("\n")
    out1.close()

    out1 = open('positive_clinton.txt', 'w')
    out1.truncate()
    for i in ap_clinton:
        out1.write(str(i))
        out1.write("\n")
    out1.close()