Пример #1
0
                    model_dir + "/" + weights_fname,
                    ".\nThese are to be used as input for party which owns the model\n",
                )
                DumpTFMtData.save_weights(optimized_graph_def, sess, feed_dict,
                                          weights_fname, scaling_factor)
                weights_path = os.path.join(model_dir, weights_fname)
    os.chdir(cwd)
    return weights_path


def parse_args():
    parser = argparse.ArgumentParser()
    parser.add_argument("--config",
                        required=True,
                        type=str,
                        help="Path to the config file")
    args = parser.parse_args()
    return args


if __name__ == "__main__":
    args = parse_args()
    params = parse_config.get_params(args.config)
    compile(
        params["model_name"],
        params["input_tensors"],
        params["output_tensors"],
        params["scale"],
        params["save_weights"],
    )
Пример #2
0
    with open(filename, "r") as f:
        for line in f:
            match = matcher.fullmatch(line.rstrip())
            if match:
                unsigned_number = int(match.group(0))
                number = (unsigned_number if
                          (unsigned_number < 2**(bitlength - 1)) else
                          unsigned_number - 2**bitlength)
                scaled_array.append(float(number) / (2**scale))
    return np.array(scaled_array)


if __name__ == "__main__":
    if len(sys.argv) < 3:
        print("Usage: python get_output.py mpc_output.txt config.json")
    output_fname = sys.argv[1]
    config_name = sys.argv[2]
    params = parse_config.get_params(config_name)
    scale = 12 if params["scale"] is None else params["scale"]
    if params["bitlength"] is None:
        if target == "SCI":
            bitlength = 63
        else:
            bitlength = 64
    else:
        bitlength = params["bitlength"]
    model_name = os.path.splitext(params["model_name"])[0]
    np_arr = convert_raw_output_to_np(output_fname, bitlength, scale)
    np.save(model_name + "_output", np_arr)
    print("Output dumped as np array in " + model_name + "_output.npy")