def feature_to_torch(self, all_data): for i, data in enumerate(all_data): if "example_id" not in data: data["example_id"] = ''.join([ random.choice(string.ascii_letters + string.digits) for n in range(8) ]) data["snt_id"] = seq_to_id(self.dicts["word_dict"], data["tok"])[0] data["lemma_id"] = seq_to_id(self.dicts["lemma_dict"], data["lem"])[0] data["pos_id"] = seq_to_id(self.dicts["pos_dict"], data["pos"])[0] data["ner_id"] = seq_to_id(self.dicts["ner_dict"], data["ner"])[0] # when using all_data, batch_size is all if self.opt.bert_model: data_iterator = BertDataIterator([], self.opt, self.dicts["ucca_rel_dict"], all_data=all_data) order, idsBatch, srcBatch, src_charBatch, sourceBatch, srcBertBatch = data_iterator[ 0] else: data_iterator = DataIterator([], self.opt, self.dicts["ucca_rel_dict"], all_data=all_data) order, idsBatch, srcBatch, src_charBatch, sourceBatch = data_iterator[ 0] srcBertBatch = None return order, idsBatch, srcBatch, src_charBatch, sourceBatch, srcBertBatch, data_iterator
def feature_to_torch(self, all_data): for i, data in enumerate(all_data): data["snt_id"] = seq_to_id(self.dicts["word_dict"], data["tok"])[0] data["lemma_id"] = seq_to_id(self.dicts["lemma_dict"], data["lem"])[0] data["pos_id"] = seq_to_id(self.dicts["pos_dict"], data["pos"])[0] data["ner_id"] = seq_to_id(self.dicts["ner_dict"], data["ner"])[0] data_iterator = DataIterator([], self.opt, self.dicts["rel_dict"], volatile=True, all_data=all_data) order, srcBatch, src_sourceBatch = data_iterator[0] return order, srcBatch, src_sourceBatch, data_iterator