def run(classifier1, classifier2): parser = LC_QaudParser() query_builder = Orchestrator(None, classifier1, classifier2, parser, auto_train=False) print "train_question_classifier" scores = query_builder.train_question_classifier(file_path="../data/LC-QUAD/data_v8.json", test_size=0.5) print scores y_pred = query_builder.question_classifier.predict(query_builder.X_test) print(classification_report(query_builder.y_test, y_pred)) print "double_relation_classifer" scores = query_builder.train_double_relation_classifier(file_path="../data/LC-QUAD/data_v8.json", test_size=0.5) print scores y_pred = query_builder.double_relation_classifer.predict(query_builder.X_test) print(classification_report(query_builder.y_test, y_pred))
if __name__ == "__main__": args = Struct() base_path = "./learning/treelstm/" args.save = os.path.join(base_path, "checkpoints/") args.expname = "lc_quad" args.mem_dim = 150 args.hidden_dim = 50 args.num_classes = 2 args.input_dim = 300 args.sparse = "" args.lr = 0.01 args.wd = 1e-4 args.data = os.path.join(base_path, "data/lc_quad/") args.cuda = False parser = LC_QaudParser() kb = parser.kb base_dir = "./output" question_type_classifier_path = os.path.join(base_dir, "question_type_classifier") utility.makedirs(question_type_classifier_path) question_type_classifier = SVMClassifier( os.path.join(question_type_classifier_path, "svm.model")) o = Orchestrator(None, question_type_classifier, None, parser, True) raw_entities = [{ "surface": "", "uris": [{ "confidence": 1,