def __call__(self, args): self.args = args if not hasattr(self.args, 'interpolation'): self.args.interpolation = 0.5 if not os.path.exists(args.file): os.mkdir(args.file) if not os.path.exists(args.fields) or args.preprocess: print("Preprocess the data") self.WORD = Field('words', pad=pad, unk=unk, bos=bos, lower=True) # if args.feat == 'char': # self.FEAT = CharField('chars', pad=pad, unk=unk, bos=bos, # fix_len=args.fix_len, tokenize=list) # elif args.feat == 'bert': # tokenizer = BertTokenizer.from_pretrained(args.bert_model) # self.FEAT = BertField('bert', pad='[PAD]', bos='[CLS]', # tokenize=tokenizer.encode) # else: # self.FEAT = Field('tags', bos=bos) self.CHAR_FEAT = None self.POS_FEAT = None self.BERT_FEAT = None self.FEAT = [self.WORD] if args.use_char: self.CHAR_FEAT = CharField('chars', pad=pad, unk=unk, bos=bos, fix_len=args.fix_len, tokenize=list) self.FEAT.append(self.CHAR_FEAT) if args.use_pos: self.POS_FEAT = Field('tags', bos=bos) if args.use_bert: tokenizer = BertTokenizer.from_pretrained(args.bert_model) self.BERT_FEAT = BertField('bert', pad='[PAD]', bos='[CLS]', tokenize=tokenizer.encode) self.FEAT.append(self.BERT_FEAT) self.HEAD = Field('heads', bos=bos, use_vocab=False, fn=int) self.REL = Field('rels', bos=bos) self.fields = CoNLL(FORM=self.FEAT, CPOS=self.POS_FEAT, HEAD=self.HEAD, DEPREL=self.REL) # if args.feat in ('char', 'bert'): # self.fields = CoNLL(FORM=(self.WORD, self.FEAT), # HEAD=self.HEAD, DEPREL=self.REL) # else: # self.fields = CoNLL(FORM=self.WORD, CPOS=self.FEAT, # HEAD=self.HEAD, DEPREL=self.REL) train = Corpus.load(args.ftrain, self.fields) if args.fembed: embed = Embedding.load(args.fembed, args.unk) else: embed = None self.WORD.build(train, args.min_freq, embed) if args.use_char: self.CHAR_FEAT.build(train) if args.use_pos: self.POS_FEAT.build(train) if args.use_bert: self.BERT_FEAT.build(train) # self.FEAT.build(train) self.REL.build(train) torch.save(self.fields, args.fields) else: self.fields = torch.load(args.fields) if args.feat in ('char', 'bert'): self.WORD, self.FEAT = self.fields.FORM else: self.WORD, self.FEAT = self.fields.FORM, self.fields.CPOS self.HEAD, self.REL = self.fields.HEAD, self.fields.DEPREL self.puncts = torch.tensor([ i for s, i in self.WORD.vocab.stoi.items() if ispunct(s) ]).to(args.device) self.rel_criterion = nn.CrossEntropyLoss() self.arc_criterion = nn.CrossEntropyLoss() if args.binary: self.arc_criterion = nn.BCEWithLogitsLoss(reduction='none') # print(f"{self.WORD}\n{self.FEAT}\n{self.HEAD}\n{self.REL}") print(f"{self.WORD}\n{self.HEAD}\n{self.REL}") update_info = {} # pdb.set_trace() if args.use_char: update_info['n_char_feats'] = len(self.CHAR_FEAT.vocab) if args.use_pos: update_info['n_pos_feats'] = len(self.POS_FEAT.vocab) args.update({ 'n_words': self.WORD.vocab.n_init, # 'n_feats': len(self.FEAT.vocab), 'n_rels': len(self.REL.vocab), 'pad_index': self.WORD.pad_index, 'unk_index': self.WORD.unk_index, 'bos_index': self.WORD.bos_index }) args.update(update_info)
def __call__(self, args): self.args = args if not os.path.exists(args.file): os.mkdir(args.file) if not os.path.exists(args.fields) or args.preprocess: print("Preprocess the data") self.WORD = Field('words', pad=pad, unk=unk, bos=bos, lower=True) if args.feat == 'char': self.FEAT = CharField('chars', pad=pad, unk=unk, bos=bos, fix_len=args.fix_len, tokenize=list) elif args.feat == 'bert': tokenizer = BertTokenizer.from_pretrained(args.bert_model) self.FEAT = BertField('bert', pad='[PAD]', bos='[CLS]', tokenize=tokenizer.encode) else: self.FEAT = Field('tags', bos=bos) self.HEAD = Field('heads', bos=bos, use_vocab=False, fn=int) self.REL = Field('rels', bos=bos) if args.feat in ('char', 'bert'): self.fields = CoNLL(FORM=(self.WORD, self.FEAT), HEAD=self.HEAD, DEPREL=self.REL) else: self.fields = CoNLL(FORM=self.WORD, CPOS=self.FEAT, HEAD=self.HEAD, DEPREL=self.REL) train = Corpus.load(args.ftrain, self.fields) if args.fembed: embed = Embedding.load(args.fembed, args.unk) else: embed = None self.WORD.build(train, args.min_freq, embed) self.FEAT.build(train) self.REL.build(train) torch.save(self.fields, args.fields) else: self.fields = torch.load(args.fields) if args.feat in ('char', 'bert'): self.WORD, self.FEAT = self.fields.FORM else: self.WORD, self.FEAT = self.fields.FORM, self.fields.CPOS self.HEAD, self.REL = self.fields.HEAD, self.fields.DEPREL self.puncts = torch.tensor([ i for s, i in self.WORD.vocab.stoi.items() if ispunct(s) ]).to(args.device) self.criterion = nn.CrossEntropyLoss() print(f"{self.WORD}\n{self.FEAT}\n{self.HEAD}\n{self.REL}") args.update({ 'n_words': self.WORD.vocab.n_init, 'n_feats': len(self.FEAT.vocab), 'n_rels': len(self.REL.vocab), 'pad_index': self.WORD.pad_index, 'unk_index': self.WORD.unk_index, 'bos_index': self.WORD.bos_index })
def __call__(self, args): self.args = args if not os.path.exists(args.file): os.mkdir(args.file) if not os.path.exists(args.fields) or args.preprocess: logger.info("Preprocess the data") self.WORD = Field('words', pad=pad, unk=unk, bos=bos, lower=args.lower) if args.feat == 'char': self.FEAT = SubwordField('chars', pad=pad, unk=unk, bos=bos, fix_len=args.fix_len, tokenize=list) elif args.feat == 'bert': tokenizer = SubwordField.tokenizer(args.bert_model) self.FEAT = SubwordField('bert', tokenizer=tokenizer, fix_len=args.fix_len) self.bos = self.FEAT.bos or bos if hasattr(tokenizer, 'vocab'): self.FEAT.vocab = tokenizer.vocab else: self.FEAT.vocab = FieldVocab( tokenizer.unk_token_id, { tokenizer._convert_id_to_token(i): i for i in range(len(tokenizer)) }) else: self.FEAT = Field('tags', bos=self.bos) self.ARC = Field('arcs', bos=self.bos, use_vocab=False, fn=numericalize) self.REL = Field('rels', bos=self.bos) if args.feat == 'bert': if args.n_embed: self.fields = CoNLL(FORM=(self.WORD, self.FEAT), HEAD=self.ARC, DEPREL=self.REL) self.WORD.bos = self.bos # ensure representations of the same length else: self.fields = CoNLL(FORM=self.FEAT, HEAD=self.ARC, DEPREL=self.REL) self.WORD = None elif args.feat == 'char': self.fields = CoNLL(FORM=(self.WORD, self.FEAT), HEAD=self.ARC, DEPREL=self.REL) else: self.fields = CoNLL(FORM=self.WORD, CPOS=self.FEAT, HEAD=self.ARC, DEPREL=self.REL) train = Corpus.load(args.ftrain, self.fields, args.max_sent_length) if args.fembed: embed = Embedding.load(args.fembed, args.unk) else: embed = None if self.WORD: self.WORD.build(train, args.min_freq, embed) self.FEAT.build(train) self.REL.build(train) if args.feat == 'bert': # do not save the tokenize funztion, or else it might be incompatible with new releases tokenize = self.FEAT.tokenize # save it self.FEAT.tokenize = None torch.save(self.fields, args.fields) if args.feat == 'bert': self.FEAT.tokenize = tokenize # restore self.trainset = train # pass it on to subclasses else: self.trainset = None self.fields = torch.load(args.fields) if args.feat == 'bert': tokenizer = SubwordField.tokenizer(args.bert_model) if args.n_embed: self.fields.FORM[1].tokenize = tokenizer.tokenize else: self.fields.FORM.tokenize = tokenizer.tokenize if args.feat in ('char', 'bert'): if isinstance(self.fields.FORM, tuple): self.WORD, self.FEAT = self.fields.FORM else: self.WORD, self.FEAT = None, self.fields.FORM else: self.WORD, self.FEAT = self.fields.FORM, self.fields.CPOS self.ARC, self.REL = self.fields.HEAD, self.fields.DEPREL self.puncts = torch.tensor( [i for s, i in self.WORD.vocab.stoi.items() if ispunct(s)]).to(args.device) if self.WORD else [] # override parameters from embeddings: if self.WORD: args.update({ 'n_words': self.WORD.vocab.n_init, 'pad_index': self.WORD.pad_index, 'unk_index': self.WORD.unk_index, 'bos_index': self.WORD.bos_index, }) args.update({ 'n_feats': len(self.FEAT.vocab), 'n_rels': len(self.REL.vocab), 'feat_pad_index': self.FEAT.pad_index, }) logger.info("Features:") if self.WORD: logger.info(f" {self.WORD}") logger.info(f" {self.FEAT}\n {self.ARC}\n {self.REL}")
def __call__(self, args): self.args = args logging.basicConfig(filename=args.output, filemode='w', format='%(asctime)s %(levelname)-8s %(message)s', level=logging.INFO, datefmt='%Y-%m-%d %H:%M:%S') args.ud_dataset = { 'en': ( 'data/ud/UD_English-EWT/en_ewt-ud-train.conllx', 'data/ud/UD_English-EWT/en_ewt-ud-dev.conllx', 'data/ud/UD_English-EWT/en_ewt-ud-test.conllx', "data/fastText_data/wiki.en.ewt.vec.new", ), 'en20': ( 'data/ud/UD_English-EWT/en_ewt-ud-train20.conllx', 'data/ud/UD_English-EWT/en_ewt-ud-dev.conllx', 'data/ud/UD_English-EWT/en_ewt-ud-test.conllx', "data/fastText_data/wiki.en.ewt.vec.new", ), 'en40': ( 'data/ud/UD_English-EWT/en_ewt-ud-train40.conllx', 'data/ud/UD_English-EWT/en_ewt-ud-dev.conllx', 'data/ud/UD_English-EWT/en_ewt-ud-test.conllx', "data/fastText_data/wiki.en.ewt.vec.new", ), 'en60': ( 'data/ud/UD_English-EWT/en_ewt-ud-train60.conllx', 'data/ud/UD_English-EWT/en_ewt-ud-dev.conllx', 'data/ud/UD_English-EWT/en_ewt-ud-test.conllx', "data/fastText_data/wiki.en.ewt.vec.new", ), 'en80': ( 'data/ud/UD_English-EWT/en_ewt-ud-train80.conllx', 'data/ud/UD_English-EWT/en_ewt-ud-dev.conllx', 'data/ud/UD_English-EWT/en_ewt-ud-test.conllx', "data/fastText_data/wiki.en.ewt.vec.new", ), 'ar': ( "data/ud/UD_Arabic-PADT/ar_padt-ud-train.conllx", "data/ud/UD_Arabic-PADT/ar_padt-ud-dev.conllx", "data/ud/UD_Arabic-PADT/ar_padt-ud-test.conllx", "data/fastText_data/wiki.ar.padt.vec.new", ), 'ar20': ( "data/ud/UD_Arabic-PADT/ar_padt-ud-train20.conllx", "data/ud/UD_Arabic-PADT/ar_padt-ud-dev.conllx", "data/ud/UD_Arabic-PADT/ar_padt-ud-test.conllx", "data/fastText_data/wiki.ar.padt.vec.new", ), 'ar40': ( "data/ud/UD_Arabic-PADT/ar_padt-ud-train40.conllx", "data/ud/UD_Arabic-PADT/ar_padt-ud-dev.conllx", "data/ud/UD_Arabic-PADT/ar_padt-ud-test.conllx", "data/fastText_data/wiki.ar.padt.vec.new", ), 'ar60': ( "data/ud/UD_Arabic-PADT/ar_padt-ud-train60.conllx", "data/ud/UD_Arabic-PADT/ar_padt-ud-dev.conllx", "data/ud/UD_Arabic-PADT/ar_padt-ud-test.conllx", "data/fastText_data/wiki.ar.padt.vec.new", ), 'ar80': ( "data/ud/UD_Arabic-PADT/ar_padt-ud-train80.conllx", "data/ud/UD_Arabic-PADT/ar_padt-ud-dev.conllx", "data/ud/UD_Arabic-PADT/ar_padt-ud-test.conllx", "data/fastText_data/wiki.ar.padt.vec.new", ), 'bg': ( "data/ud/UD_Bulgarian-BTB/bg_btb-ud-train.conllx", "data/ud/UD_Bulgarian-BTB/bg_btb-ud-dev.conllx", "data/ud/UD_Bulgarian-BTB/bg_btb-ud-test.conllx", "data/fastText_data/wiki.bg.btb.vec.new", ), 'da': ( "data/ud/UD_Danish-DDT/da_ddt-ud-train.conllx", "data/ud/UD_Danish-DDT/da_ddt-ud-dev.conllx", "data/ud/UD_Danish-DDT/da_ddt-ud-test.conllx", "data/fastText_data/wiki.da.ddt.vec.new", ), 'de': ( "data/ud/UD_German-GSD/de_gsd-ud-train.conllx", "data/ud/UD_German-GSD/de_gsd-ud-dev.conllx", "data/ud/UD_German-GSD/de_gsd-ud-test.conllx", "data/fastText_data/wiki.de.gsd.vec.new", ), 'es': ( "data/ud/UD_Spanish-GSDAnCora/es_gsdancora-ud-train.conllx", "data/ud/UD_Spanish-GSDAnCora/es_gsdancora-ud-dev.conllx", "data/ud/UD_Spanish-GSDAnCora/es_gsdancora-ud-test.conllx", "data/fastText_data/wiki.es.gsdancora.vec.new", ), 'es20': ( "data/ud/UD_Spanish-GSDAnCora/es_gsdancora-ud-train20.conllx", "data/ud/UD_Spanish-GSDAnCora/es_gsdancora-ud-dev.conllx", "data/ud/UD_Spanish-GSDAnCora/es_gsdancora-ud-test.conllx", "data/fastText_data/wiki.es.gsdancora.vec.new", ), 'es40': ( "data/ud/UD_Spanish-GSDAnCora/es_gsdancora-ud-train40.conllx", "data/ud/UD_Spanish-GSDAnCora/es_gsdancora-ud-dev.conllx", "data/ud/UD_Spanish-GSDAnCora/es_gsdancora-ud-test.conllx", "data/fastText_data/wiki.es.gsdancora.vec.new", ), 'es60': ( "data/ud/UD_Spanish-GSDAnCora/es_gsdancora-ud-train60.conllx", "data/ud/UD_Spanish-GSDAnCora/es_gsdancora-ud-dev.conllx", "data/ud/UD_Spanish-GSDAnCora/es_gsdancora-ud-test.conllx", "data/fastText_data/wiki.es.gsdancora.vec.new", ), 'es80': ( "data/ud/UD_Spanish-GSDAnCora/es_gsdancora-ud-train80.conllx", "data/ud/UD_Spanish-GSDAnCora/es_gsdancora-ud-dev.conllx", "data/ud/UD_Spanish-GSDAnCora/es_gsdancora-ud-test.conllx", "data/fastText_data/wiki.es.gsdancora.vec.new", ), 'fa': ( "data/ud/UD_Persian-Seraji/fa_seraji-ud-train.conllx", "data/ud/UD_Persian-Seraji/fa_seraji-ud-dev.conllx", "data/ud/UD_Persian-Seraji/fa_seraji-ud-test.conllx", "data/fastText_data/wiki.fa.seraji.vec.new", ), 'fr': ( "data/ud/UD_French-GSD/fr_gsd-ud-train.conllx", "data/ud/UD_French-GSD/fr_gsd-ud-dev.conllx", "data/ud/UD_French-GSD/fr_gsd-ud-test.conllx", "data/fastText_data/wiki.fr.gsd.vec.new", ), 'he': ( "data/ud/UD_Hebrew-HTB/he_htb-ud-train.conllx", "data/ud/UD_Hebrew-HTB/he_htb-ud-dev.conllx", "data/ud/UD_Hebrew-HTB/he_htb-ud-test.conllx", "data/fastText_data/wiki.he.htb.vec.new", ), 'hi': ( "data/ud/UD_Hindi-HDTB/hi_hdtb-ud-train.conllx", "data/ud/UD_Hindi-HDTB/hi_hdtb-ud-dev.conllx", "data/ud/UD_Hindi-HDTB/hi_hdtb-ud-test.conllx", "data/fastText_data/wiki.hi.hdtb.vec.new", ), 'hr': ( "data/ud/UD_Croatian-SET/hr_set-ud-train.conllx", "data/ud/UD_Croatian-SET/hr_set-ud-dev.conllx", "data/ud/UD_Croatian-SET/hr_set-ud-test.conllx", "data/fastText_data/wiki.hr.set.vec.new", ), 'id': ( "data/ud/UD_Indonesian-GSD/id_gsd-ud-train.conllx", "data/ud/UD_Indonesian-GSD/id_gsd-ud-dev.conllx", "data/ud/UD_Indonesian-GSD/id_gsd-ud-test.conllx", "data/fastText_data/wiki.id.gsd.vec.new", ), 'it': ( "data/ud/UD_Italian-ISDT/it_isdt-ud-train.conllx", "data/ud/UD_Italian-ISDT/it_isdt-ud-dev.conllx", "data/ud/UD_Italian-ISDT/it_isdt-ud-test.conllx", "data/fastText_data/wiki.it.isdt.vec.new", ), 'ja': ( "data/ud/UD_Japanese-GSD/ja_gsd-ud-train.conllx", "data/ud/UD_Japanese-GSD/ja_gsd-ud-dev.conllx", "data/ud/UD_Japanese-GSD/ja_gsd-ud-test.conllx", "data/fastText_data/wiki.ja.gsd.vec.new", ), 'ko': ( "data/ud/UD_Korean-GSDKaist/ko_gsdkaist-ud-train.conllx", "data/ud/UD_Korean-GSDKaist/ko_gsdkaist-ud-dev.conllx", "data/ud/UD_Korean-GSDKaist/ko_gsdkaist-ud-test.conllx", "data/fastText_data/wiki.ko.gsdkaist.vec.new", ), 'nl': ( "data/ud/UD_Dutch-AlpinoLassySmall/nl_alpinolassysmall-ud-train.conllx", "data/ud/UD_Dutch-AlpinoLassySmall/nl_alpinolassysmall-ud-dev.conllx", "data/ud/UD_Dutch-AlpinoLassySmall/nl_alpinolassysmall-ud-test.conllx", "data/fastText_data/wiki.nl.alpinolassysmall.vec.new", ), 'no': ( "data/ud/UD_Norwegian-BokmaalNynorsk/no_bokmaalnynorsk-ud-train.conllx", "data/ud/UD_Norwegian-BokmaalNynorsk/no_bokmaalnynorsk-ud-dev.conllx", "data/ud/UD_Norwegian-BokmaalNynorsk/no_bokmaalnynorsk-ud-test.conllx", "data/fastText_data/wiki.no.bokmaalnynorsk.vec.new", ), 'pt': ( "data/ud/UD_Portuguese-BosqueGSD/pt_bosquegsd-ud-train.conllx", "data/ud/UD_Portuguese-BosqueGSD/pt_bosquegsd-ud-dev.conllx", "data/ud/UD_Portuguese-BosqueGSD/pt_bosquegsd-ud-test.conllx", "data/fastText_data/wiki.pt.bosquegsd.vec.new", ), 'sv': ( "data/ud/UD_Swedish-Talbanken/sv_talbanken-ud-train.conllx", "data/ud/UD_Swedish-Talbanken/sv_talbanken-ud-dev.conllx", "data/ud/UD_Swedish-Talbanken/sv_talbanken-ud-test.conllx", "data/fastText_data/wiki.sv.talbanken.vec.new", ), 'tr': ( "data/ud/UD_Turkish-IMST/tr_imst-ud-train.conllx", "data/ud/UD_Turkish-IMST/tr_imst-ud-dev.conllx", "data/ud/UD_Turkish-IMST/tr_imst-ud-test.conllx", "data/fastText_data/wiki.tr.imst.vec.new", ), 'zh': ( "data/ud/UD_Chinese-GSD/zh_gsd-ud-train.conllx", "data/ud/UD_Chinese-GSD/zh_gsd-ud-dev.conllx", "data/ud/UD_Chinese-GSD/zh_gsd-ud-test.conllx", "data/fastText_data/wiki.zh.gsd.vec.new", )} self.args.ftrain = args.ud_dataset[args.lang][0] self.args.fdev = args.ud_dataset[args.lang][1] self.args.ftest = args.ud_dataset[args.lang][2] self.args.fembed = args.ud_dataset[args.lang][3] if not os.path.exists(args.file): os.mkdir(args.file) if not os.path.exists(args.fields) or args.preprocess: logging.info("Preprocess the data") self.WORD = Field('words', pad=pad, unk=unk, bos=bos, lower=True) tokenizer = BertTokenizer.from_pretrained(args.bert_model) self.BERT = BertField('bert', pad='[PAD]', bos='[CLS]', tokenize=tokenizer.encode) if args.feat == 'char': self.FEAT = CharField('chars', pad=pad, unk=unk, bos=bos, fix_len=args.fix_len, tokenize=list) elif args.feat == 'bert': tokenizer = BertTokenizer.from_pretrained(args.bert_model) self.FEAT = BertField('bert', pad='[PAD]', bos='[CLS]', tokenize=tokenizer.encode) else: self.FEAT = Field('tags', bos=bos) self.HEAD = Field('heads', bos=bos, use_vocab=False, fn=int) self.REL = Field('rels', bos=bos) if args.feat in ('char', 'bert'): self.fields = CoNLL(FORM=(self.WORD, self.BERT, self.FEAT), HEAD=self.HEAD, DEPREL=self.REL) else: self.fields = CoNLL(FORM=(self.WORD, self.BERT), CPOS=self.FEAT, HEAD=self.HEAD, DEPREL=self.REL) train = Corpus.load(args.ftrain, self.fields, args.max_len) if args.fembed: if args.bert is False: # fasttext embed = Embedding.load(args.fembed, args.lang, unk=args.unk) else: embed = None else: embed = None self.WORD.build(train, args.min_freq, embed) self.FEAT.build(train) self.BERT.build(train) self.REL.build(train) torch.save(self.fields, args.fields) else: self.fields = torch.load(args.fields) if args.feat in ('char', 'bert'): self.WORD, self.BERT, self.FEAT = self.fields.FORM else: self.WORD, self.BERT, self.FEAT = self.fields.FORM, self.fields.CPOS self.HEAD, self.REL = self.fields.HEAD, self.fields.DEPREL self.puncts = torch.tensor([i for s, i in self.WORD.vocab.stoi.items() if ispunct(s)]).to(args.device) self.criterion = nn.CrossEntropyLoss() logging.info(f"{self.WORD}\n{self.FEAT}\n{self.BERT}\n{self.HEAD}\n{self.REL}") args.update({ 'n_words': self.WORD.vocab.n_init, 'n_feats': len(self.FEAT.vocab), 'n_bert': len(self.BERT.vocab), 'n_rels': len(self.REL.vocab), 'pad_index': self.WORD.pad_index, 'unk_index': self.WORD.unk_index, 'bos_index': self.WORD.bos_index }) logging.info(f"n_words {args.n_words} n_feats {args.n_feats} n_bert {args.n_bert} pad_index {args.pad_index} bos_index {args.bos_index}")