Пример #1
0
Файл: test.py Проект: tfwu/hawp
                         'r-')
                plt.show()

            for k in output.keys():
                if isinstance(output[k], torch.Tensor):
                    output[k] = output[k].tolist()
            results.append(output)
        outpath_dataset = osp.join(output_dir, '{}.json'.format(name))
        logger.info('Writing the results of the {} dataset into {}'.format(
            name, outpath_dataset))
        with open(outpath_dataset, 'w') as _out:
            json.dump(results, _out)


if __name__ == "__main__":

    cfg.merge_from_file(args.config_file)
    cfg.merge_from_list(args.opts)
    cfg.freeze()

    output_dir = cfg.OUTPUT_DIR
    logger = setup_logger('hawp', output_dir, out_file='test.log')
    logger.info(args)
    logger.info("Loaded configuration file {}".format(args.config_file))

    test(cfg)

    ### Training

    # import pdb; pdb.set_trace()
Пример #2
0
def test_building():
    parser = argparse.ArgumentParser()
    parser.add_argument("--config-file",
                        metavar="FILE",
                        help="path to config file",
                        type=str,
                        required=True,
                        )
    parser.add_argument("--display",
                    default=False,
                    action='store_true')
    parser.add_argument("opts",
                        help="Modify config options using the command-line",
                        default=None,
                        nargs=argparse.REMAINDER
                        )
    parser.add_argument("--checkpoint", help="pytorch checkpoint")
    parser.add_argument("--hawp_checkpoint", help="pytorch checkpoint", default="")
    parser.add_argument("--fp16", action="store_true", help="training in fp16 mode")
    parser.add_argument("--out_fname", help="output file name", type=str, required=True)
    args = parser.parse_args()
    cfg.merge_from_file(args.config_file)
    cfg.merge_from_list(args.opts)
    cfg.freeze()

    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    model = RFJunctionDetector(cfg).to(device)
    test_dataset = build_building_test_dataset(cfg)
    if args.checkpoint:
        checkpoint = torch.load(args.checkpoint)
        model.load_state_dict(checkpoint['model_state_dict'])
    
    model = model.eval()

    # hawp_model = WireframeDetector(cfg, test_info='junc')
    # hawp_model = hawp_model.to(device)
    # logger = logging.getLogger("hawp.testing")
    # checkpointer = DetectronCheckpointer(cfg,
    #                                      hawp_model,
    #                                      save_dir=args.hawp_checkpoint,
    #                                      save_to_disk=True,
    #                                      logger=logger)
    # _ = checkpointer.load()
    # hawp_model = hawp_model.eval()
    softmax_fn = torch.nn.Softmax(dim=0)
    image_json = []

    for i, (images, target) in enumerate(tqdm(test_dataset)):
        # if test_dataset.dataset.filename(i) != 'building-180721-10001.21.27_pos_p655':
        #     continue
        with torch.no_grad():
            output, _ = model(images.to(device))
            output = to_device(output,'cpu').squeeze(dim=0)
        
        target = target.squeeze(dim=0)


        if args.display:
            output = softmax_fn(output)
            fig = plt.figure(figsize=(24, 8))
            # 01 origin
            fig.add_subplot(1, 3, 1)
            plt.imshow(((images - images.min()) * (255 / (images.max() - images.min()))).squeeze().permute(1, 2, 0).int())
            plt.title('original image')
            # 02 prediction
            fig.add_subplot(1, 3, 2)
            plt.imshow((output[1, :, :] * 255 / output[1, :, :].max()).int(), cmap='gray', vmin=0, vmax=255)
            plt.title('prediction heatmap')
            # 03 gt
            fig.add_subplot(1, 3, 3)
            plt.imshow((target * 255 / target.max()).int().permute(1, 2, 0), cmap='gray', vmin=0, vmax=255)
            plt.title('ground truth')

            # plt.show()
            if not os.path.exists("./deform_attn_test"):
                os.makedirs("./deform_attn_test")
            save_dir = "./deform_attn_test/{}/".format(args.out_fname)
            if not os.path.exists(save_dir):
                os.makedirs(save_dir)
            plt.savefig(save_dir + "{}.png".format(test_dataset.dataset.filename(i)))
            plt.cla()

            # pr curve
            target = target.round()
            binarize = lambda x, th: (x > th).int()
            tp = lambda pred, gt: (pred * gt).sum()  # [1, 1]
            fp = lambda pred, gt: (pred * (1 - gt)).sum()  # [1, 0]
            # tn = lambda pred, gt: ((1 - pred) * (1 - gt)).sum()  # [0, 0]
            fn = lambda pred, gt: ((1 - pred) * gt).sum()  # [0, 1]
            precision = lambda pred, gt: (tp(pred, gt) / (tp(pred, gt) + fp(pred, gt))).numpy().item()
            recall = lambda pred, gt: (tp(pred, gt) / (tp(pred, gt) + fn(pred, gt))).numpy().item()

            rasters = {i/100: binarize(output[1, :, :], i/100) for i in range(1, 100)}
            ps = {k: precision(v, target) for k, v in rasters.items() if not math.isnan(precision(v, target)) }
            rs = {k: recall(v, target) for k, v in rasters.items() if not math.isnan(recall(v, target)) }
            image_json.append({
                'filename': test_dataset.dataset.filename(i), 
                'precision': ps, 
                'recall': rs
            })

    if args.display:
        with open('deform_attn_test/{}.json'.format(args.out_fname), 'w') as f:
            json.dump(image_json, f)
Пример #3
0
def predict():
    parser = argparse.ArgumentParser()
    parser.add_argument("--config-file",
                        metavar="FILE",
                        help="path to config file",
                        type=str,
                        required=True,
                        )
    parser.add_argument("--display",
                    default=False,
                    action='store_true')
    parser.add_argument("opts",
                        help="Modify config options using the command-line",
                        default=None,
                        nargs=argparse.REMAINDER
                        )
    parser.add_argument("--checkpoint", help="pytorch checkpoint")
    parser.add_argument("--ann_path", help="annotation path")
    parser.add_argument("--im_path", help="image path")
    parser.add_argument("--fp16", action="store_true", help="training in fp16 mode")
    
    args = parser.parse_args()
    cfg.merge_from_file(args.config_file)
    cfg.merge_from_list(args.opts)
    cfg.freeze()

    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    model = RFJunctionDetector(cfg).to(device)
    if args.checkpoint:
        checkpoint = torch.load(args.checkpoint)
        model.load_state_dict(checkpoint['model_state_dict'], strict=False)

    transform = build_transform(cfg)
    image = io.imread(args.im_path)[:,:,:3]
    image_tensor = transform(image.astype(float))[None].to(device)
    meta = {
        'filename': args.im_path,
        'height': image.shape[0],
        'width': image.shape[1],
    }
    
    model = model.eval()

    with torch.no_grad():
        output = model(image_tensor)
        output = to_device(output,'cpu').squeeze(dim=0)

    # target = target.squeeze(dim=0)
        
    if args.display:
        threshold = 0.1
        
        fig = plt.figure(figsize=(8, 24))
        fig.add_subplot(1, 4, 1)

        plt.imshow(((image_tensor - image_tensor.min()) * (255 / (image_tensor.max() - image_tensor.min()))).squeeze().permute(1, 2, 0).int())
        
        fig.add_subplot(1, 4, 2)
        image_copy = ((image_tensor - image_tensor.min()) * (255 / (image_tensor.max() - image_tensor.min()))).squeeze()
        # image_copy = image_copy.numpy()
        # heat_idx = (output > threshold).nonzero().numpy()
        bool_map = (output < threshold).int()
        image_copy[0, ...] = image_copy[0, ...] * bool_map
        image_copy[1, ...] = image_copy[1, ...] * bool_map
        output[output < threshold] = 0
        image_copy[0, ...] = image_copy[0, ...] + output * (255 / output.max())
        image_copy[1, ...] = image_copy[1, ...] + output * (255 / output.max())
        # image_copy[heat_idx] = output[heat_idx] * 255
        plt.imshow(image_copy.permute(1, 2, 0).int())
        fig.add_subplot(1, 4, 3)
        plt.imshow((output * 255).int().permute(1, 2, 0))
        fig.add_subplot(1, 4, 4)
        plt.imshow((target * 255).int().permute(1, 2, 0))
        plt.show()
        plt.savefig("./test_fig.png")
Пример #4
0
def train_rf():
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--config-file",
        metavar="FILE",
        help="path to config file",
        type=str,
        required=True,
    )
    parser.add_argument("opts",
                        help="Modify config options using the command-line",
                        default=None,
                        nargs=argparse.REMAINDER)
    parser.add_argument("--checkpoint", help="pytorch checkpoint")
    parser.add_argument("--resume_train",
                        action="store_true",
                        help="load checkpoint and resume training")
    parser.add_argument("--fp16",
                        action="store_true",
                        help="training in fp16 mode")
    args = parser.parse_args()
    cfg.merge_from_file(args.config_file)
    cfg.merge_from_list(args.opts)
    cfg.freeze()

    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

    model = RFJunctionDetector(cfg).to(device)
    train_dataset = build_train_dataset(cfg)
    if args.checkpoint and not args.resume_train:
        checkpoint = torch.load(args.checkpoint)
        filtered_weights = {
            k: v for k, v \
            in checkpoint['model_state_dict'].items() \
            if "mflow_conv_g6_b3_joint_drop_conv_new_2" not in k
        }
        model.backbone.load_state_dict(filtered_weights, strict=False)
    elif args.checkpoint:
        checkpoint = torch.load(args.checkpoint)
        model.load_state_dict(checkpoint['model_state_dict'])

    params_res = []
    params_refine = []
    for k, v in model.named_parameters():
        if k.split('.')[1].startswith(("conv1", "bn_conv1", "res", "bn")):
            params_res.append(v)
        else:
            params_refine.append(v)
    optimizer = torch.optim.Adam([{
        "params": params_res,
        "lr": 0.00000003
    }, {
        "params": params_refine,
        "lr": 0.0000003
    }],
                                 betas=(0.9, 0.999),
                                 weight_decay=0.0005)

    if args.checkpoint and args.resume_train:
        optimizer.load_state_dict(checkpoint["optimizer_state_dict"])

    model.train()

    if args.fp16:
        scaler = torch.cuda.amp.GradScaler()
        if args.checkpoint:
            scaler.load_state_dict(checkpoint["scaler_state_dict"])

    # loss_fn = torch.nn.CrossEntropyLoss()
    loss_fn = torch.nn.MSELoss(reduce=True, size_average=True)

    total_loss = 0.0
    t = 0 if not args.resume_train else checkpoint["iter"]

    for epoch in range(1000):
        for it, (images, target) in enumerate(train_dataset):
            images = images.to(device)
            target = target.to(device)

            # import matplotlib.pyplot as plt
            # fig = plt.figure(figsize=(8, 16))
            # fig.add_subplot(1, 2, 1)
            # plt.imshow(images[0, ...].squeeze().permute(1, 2, 0))
            # fig.add_subplot(1, 2, 2)
            # plt.imshow(target[0, ...].squeeze())
            # plt.show()

            if args.fp16:
                with torch.cuda.amp.autocast():
                    y = model(images)
                    loss = loss_fn(y, target.half())
            else:
                y = model(images)
                loss = loss_fn(y, target)

            total_loss += loss.item()
            if (t + 1) % 100 == 0:
                print("iter: {}, loss: {}".format(t + 1, total_loss / 100))
                total_loss = 0.0

            optimizer.zero_grad()
            if args.fp16:
                scaler.scale(loss).backward()
                scaler.step(optimizer)
                scaler.update()
            else:
                loss.backward()
                optimizer.step()

            if t % 10000 == 0 and t != 0:
                torch.save(
                    {
                        'iter': t,
                        'model_state_dict': model.state_dict(),
                        'optimizer_state_dict': optimizer.state_dict(),
                        # 'scaler_state_dict': scaler.state_dict(),
                        'loss': loss,
                    },
                    "checkpoint/checkpoint_finetune_iter_{}".format(t))
            t += 1
Пример #5
0
def train_building():
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--config-file",
        metavar="FILE",
        help="path to config file",
        type=str,
        required=True,
    )
    parser.add_argument("opts",
                        help="Modify config options using the command-line",
                        default=None,
                        nargs=argparse.REMAINDER)
    parser.add_argument("--checkpoint", help="checkpoint to be loaded")
    parser.add_argument("--checkpoint_dir", help="checkpoint dir")
    parser.add_argument("--checkpoint_gap",
                        default=10000,
                        type=int,
                        help="how many iters to save checkpoint")
    parser.add_argument("--resume_train",
                        action="store_true",
                        help="load checkpoint and resume training")
    parser.add_argument("--fp16",
                        action="store_true",
                        help="training in fp16 mode")
    parser.add_argument("--lr_base",
                        default=1e-5,
                        type=float,
                        help="refine net base learning rate")
    parser.add_argument("--lr_gap",
                        default=100,
                        type=int,
                        help="how many iters to print loss information")
    parser.add_argument("--w_ctl",
                        default=1,
                        type=float,
                        help="contrastive loss weight")
    args = parser.parse_args()
    cfg.merge_from_file(args.config_file)
    cfg.merge_from_list(args.opts)
    cfg.freeze()

    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

    model = RFJunctionDetector(cfg).to(device)
    train_dataset = build_building_train_dataset(cfg)
    if args.checkpoint and not args.resume_train:
        checkpoint = torch.load(args.checkpoint)
        filtered_weights = {
            k: v for k, v \
            in checkpoint['model_state_dict'].items() \
            if "mflow_conv_g6_b3_joint_drop_conv_new_2" not in k
        }
        model.backbone.load_state_dict(filtered_weights, strict=False)
    elif args.checkpoint:
        checkpoint = torch.load(args.checkpoint)
        model.load_state_dict(checkpoint['model_state_dict'])

    params_res = []
    params_refine = []
    for k, v in model.named_parameters():
        if k.split('.')[1].startswith(("conv1", "bn_conv1", "res", "bn")):
            params_res.append(v)
        else:
            params_refine.append(v)
    optimizer = torch.optim.Adam([{
        "params": params_res,
        "lr": 3 * args.lr_base / 10
    }, {
        "params": params_refine,
        "lr": 3 * args.lr_base
    }],
                                 betas=(0.9, 0.999),
                                 weight_decay=0.0005)

    if args.checkpoint and args.resume_train:
        optimizer.load_state_dict(checkpoint["optimizer_state_dict"])

    model.train()

    if args.fp16:
        scaler = torch.cuda.amp.GradScaler()
        if args.checkpoint:
            scaler.load_state_dict(checkpoint["scaler_state_dict"])

    loss_fn = torch.nn.CrossEntropyLoss()
    # loss_fn = torch.nn.MSELoss(reduce=True, size_average=True)

    total_loss, total_loss_main, total_loss_aux = 0.0, 0.0, 0.0
    t = 0 if not args.resume_train else checkpoint["iter"]

    if not os.path.exists(args.checkpoint_dir):
        os.makedirs(args.checkpoint_dir)

    with torch.autograd.set_detect_anomaly(True):
        for epoch in range(1000):
            for it, (images, target) in enumerate(train_dataset):
                images = images.to(device)
                target = target.to(device).long()

                # import matplotlib.pyplot as plt
                # fig = plt.figure(figsize=(8, 16))
                # fig.add_subplot(1, 2, 1)
                # plt.imshow(images[0, ...].squeeze().permute(1, 2, 0))
                # fig.add_subplot(1, 2, 2)
                # plt.imshow(target[0, ...].squeeze())
                # plt.show()

                if args.fp16:
                    with torch.cuda.amp.autocast():
                        y, contrastive_loss = model(images)
                        loss = loss_fn(y, target.half())
                        # contrastive_loss = sum(contrastive_loss)
                else:
                    y, contrastive_loss = model(images)
                    contrastive_loss = sum([
                        torch.mean(c)
                        for c in contrastive_loss if not isinstance(c, int)
                    ]) * 1e-3
                    loss_main = loss_fn(y, target.squeeze(1))
                    loss = loss_main + contrastive_loss * args.w_ctl

                total_loss += loss.item()
                total_loss_main += loss_main.item()
                total_loss_aux += contrastive_loss.item(
                ) if cfg.MODEL.ATTN_USE_CTL else 0
                if (t + 1) % args.lr_gap == 0:
                    print(
                        "iter: {}, loss_total: {}, loss_main: {}, loss_aux: {}"
                        .format(t + 1, total_loss / args.lr_gap,
                                total_loss_main / args.lr_gap,
                                total_loss_aux / args.lr_gap))
                    total_loss = 0.0
                    total_loss_main = 0.0
                    total_loss_aux = 0.0

                optimizer.zero_grad()
                if args.fp16:
                    scaler.scale(loss).backward()
                    scaler.step(optimizer)
                    scaler.update()
                else:
                    loss.backward()
                    optimizer.step()

                if t % args.checkpoint_gap == 0 and t != 0:
                    torch.save(
                        {
                            'iter': t,
                            'model_state_dict': model.state_dict(),
                            'optimizer_state_dict': optimizer.state_dict(),
                            # 'scaler_state_dict': scaler.state_dict(),
                            'loss': loss,
                        },
                        "{}/checkpoint_finetune_iter_{}".format(
                            args.checkpoint_dir, t))
                t += 1