def test_load_data(self): data = load_data('example.txt') self.assertIn('rules', data) self.assertIn('your_ticket', data) self.assertIn('nearby_tickets', data) self.assertIn('class', data['rules']) self.assertIn('row', data['rules']) self.assertIn('seat', data['rules']) self.assertIsNone(assert_array_equal((1, 3), data['rules']['class'][0])) self.assertIsNone(assert_array_equal((5, 7), data['rules']['class'][1])) self.assertIsNone(assert_array_equal((6, 11), data['rules']['row'][0])) self.assertIsNone(assert_array_equal((33, 44), data['rules']['row'][1])) self.assertIsNone( assert_array_equal((13, 40), data['rules']['seat'][0])) self.assertIsNone( assert_array_equal((45, 50), data['rules']['seat'][1])) self.assertIsNone(assert_array_equal([7, 1, 14], data['your_ticket'])) self.assertIsNone( assert_array_equal([7, 3, 47], data['nearby_tickets'][0])) self.assertIsNone( assert_array_equal([40, 4, 50], data['nearby_tickets'][1])) self.assertIsNone( assert_array_equal([55, 2, 20], data['nearby_tickets'][2])) self.assertIsNone( assert_array_equal([38, 6, 12], data['nearby_tickets'][3]))
def test_determine_coumn_rules(self): data = load_data('example.txt') valid_tickets, error_rate = validate_tickets(data) column_rules = determine_column_rules(data, valid_tickets) self.assertEqual(column_rules[0], 'row') self.assertEqual(column_rules[1], 'class') self.assertEqual(column_rules[2], 'seat')
def find_encryption_weakness(input_filename, preamble_size): fail_number = find_invalid_number(input_filename, preamble_size) if fail_number is not None: data = load_data(input_filename) for i in range(len(data)): for j in range(i + 1, len(data) + 1): snip = data[i:j] if np.sum(snip) == fail_number: return np.min(snip) + np.max(snip)
dataset = sys.argv[1] dataset_dir = 'Datasets/{}/'.format(dataset.title()) drop_columns = [] if dataset == 'housing': target_column = 'SalePrice' drop_columns = ['Id'] elif dataset == 'grades': target_column = 'finalgrade' else: raise Exception('Unknown dataset') df = load_data(dataset_dir + 'train.csv', target_column, drop_columns) train, test = split_train_test(df) train = TrainData(train, target_column) test = TestData(test, target_column, train.get_imputation_map(), train.get_categorical_maps()) with open(dataset_dir + 'config.json', 'r') as f: gbrt_config = json.load(f) gbrt = GBRT(**gbrt_config) train_errors, test_errors = gbrt.fit(train, test) fig = plt.figure() fig.suptitle('MSE as function of NumberOfBasisFunctions') plt.plot(range(1,
def test_example(self): from part1 import validate_tickets data = load_data('example.txt') valid_tickets, error_rate = validate_tickets(data) self.assertEqual(error_rate, 71)
def main(): parser = argparse.ArgumentParser() parser.add_argument('input_filename', type=str) args = parser.parse_args() play_game(*build_cards(load_data(args.input_filename)))
def test_load_data(self): from part1 import load_data initial_state = np.array([['.', '#', '.'], ['.', '.', '#'], ['#', '#', '#']]) data = load_data('example1.txt') self.assertIsNone(assert_array_equal(initial_state, data))