Пример #1
0
    def BrefBrs(params, outkeys):

        Inform.Display(params['nodes'], params['itera'], 'BrefBrs')
        bar = progressbar.ProgressBar(widgets=[progressbar.Bar(), ' (', progressbar.ETA(), ') '])
        outnames = {key: DataOut(   name = outkeys[key], method = 'brs', nd = params['nodes'], 
                                    it = params['itera'], pic = params['picit']) for key in outkeys}
        
        n = Stepsize()
        
        for u in range(n.st):
            
            step = params['tend']/n.step[u]
            p = Particle(params['nodes'], n.step[u])
            p.S, p.ST, p.SQ, p.Sx, p.QQ, p.Q, p.dt, p.wi = p.GetMatrices(params['nodes'], 0.0, step)

            bar = progressbar.ProgressBar()
            for i in bar(range(int(n.step[u]))):
                
                p.SweeperNoVelUp(params['nodes'], params['itera'], p.x, p.v, p.x0, p.v0, p.x_, p.v_, 'IntegrateOff')
                p.UpdateDat(params['nodes'])
                
                if p.P.Bound(p.xend[params['nodes'] - 1, :]):
                    lastpnt = i
                    break
                
                p.GetBrefPoint(i, params['nodes'], step, p.xend, p.vend, p.dt)
        
            p.GetStanDev(step, outnames['deviation'].fullname, params)
            
        p.RHSeval(params, outnames['deviation'].fullname, 'BrefBrs')
Пример #2
0
    def run(self, bfield, outnames, params):
        # Buffers for k+1 and k solution at integer step
        x_old = np.zeros((3, self.nodes))
        v_old = np.zeros((3, self.nodes))
        x_new = np.zeros((3, self.nodes))
        v_new = np.zeros((3, self.nodes))

        # Store values for Bref subroutine:
        xu = np.zeros([self.nodes, 3])
        vu = np.zeros([self.nodes, 3])
        p = Particle(self.nodes, self.nsteps)

        bar = progressbar.ProgressBar()
        for nn in bar(range(self.nsteps)):
            '''
      Predictor: solve (Id - Q_delta *F) u^1 = u0 + 0.5*Fu0 + v00 (see notes for definitions)
      '''
            x0 = np.kron(
                np.ones(self.nodes).transpose(), self.positions[:, nn])
            v0 = np.kron(
                np.ones(self.nodes).transpose(), self.velocities[:, nn])
            u0 = self.pack(x0, v0)

            Fu0 = self.F(self.positions[:, nn], self.velocities[:, nn])
            Fu0 = np.kron(np.ones(self.nodes).transpose(), Fu0)
            Fu0 = self.pack(self.delta_tau[0]**2 * Fu0,
                            self.delta_tau[0] * Fu0)
            v00 = self.pack(
                self.delta_tau[0] * np.kron(
                    np.ones(self.nodes).transpose(), self.velocities[:, nn]),
                np.zeros(self.dim / 2))

            u_old = self.sweep(u0 + 0.5 * Fu0 + v00)
            x_old, v_old = self.unpack(u_old)
            '''
      SDC iteration
      '''
            if self.kpic > 0:
                precond = lambda b: self.sweep_linear(b, x_old)
                quadrature = lambda u: u - self.quad(u, x_old)
            else:
                precond = lambda b: self.sweep(b)
                quadrature = lambda u: u - self.quad(u)
            u_new, self.stats['residuals'][0:self.kiter, nn] = mygmres(
                quadrature, u0, u_old, self.kiter, precond)
            '''
      Picard iteration to adjust for nonlinearity
      '''
            for kk in range(self.kpic):
                u_new = u0 + self.quad(u_new)
            x_old, v_old = self.unpack(u_new)

            for i in range(self.nodes):
                xu[i, :] = x_old[:, i]
                vu[i, :] = v_old[:, i]
            '''
      Prepare next time step
      '''
            # Compute residual after final iteration
            self.stats['residuals'][self.kiter, nn] = self.getResiduals(
                self.positions[:, nn], self.velocities[:, nn], x_old, v_old)

            self.positions[:,
                           nn + 1], self.velocities[:, nn +
                                                    1] = self.finalUpdateStep(
                                                        x_old, v_old,
                                                        self.positions[:, nn],
                                                        self.velocities[:, nn])
            self.stats['energy_errors'][nn] = self.getEnergyError(
                self.positions[:, nn + 1], self.velocities[:, nn + 1])

            xu[self.nodes - 1, :] = self.positions[:, nn + 1]
            vu[self.nodes - 1, :] = self.velocities[:, nn + 1]

            if p.P.Bound(xu[self.nodes - 1, :]):
                break
            if bfield:
                p.GetBrefPoint(nn, self.nodes, self.dt, xu, vu, self.delta_tau)
        p.GetStanDev(self.dt, outnames['deviation'].fullname, params)

        return self.positions, self.velocities, self.stats