def __init__(self, odom_rate, sens_median, sens_std_dev, vel_uniform_dist, num_particles, base_scan, start_pos=None, debug=False): # Odom rate is used for re-positioning of particles and assumed pose after applying filter self.odom_rate = odom_rate # Need sensory uncertainty distribution for calculating particle beam probabilities self.sens_median = sens_median self.sens_std_dev = sens_std_dev # Need odometry uncertainty for calculating movement probabilities self.vel_uniform_dist = vel_uniform_dist # Want to keep track of how many particles we are going to have in the swarm self.num_particles = num_particles # If there is a starting position for the robot we want to make use of it # in order to instantly converge on that spot self.start_pos = start_pos # If we want debug messages, let us know! self.debug = debug # Pre-calculate factors for calculating beam unertainty since these are # done millions of times per filter (Well... up to 50 times per beam per # particle, 30 beams or so, say 1000 particles -> 1.5 million times) self.laser_prob_f_1 = (1 / (math.sqrt(2.0*math.pi*(self.sens_std_dev**2.0)))) self.laser_prob_f_2 = -0.5 / (self.sens_std_dev**2.0) # Set up map storage facilities self.map_s = MapStorage(self.debug) # Set up a publisher for publishing the (assumed) position of the robot # found using the particle filter self.particle_p = ParticlePose("map") # Set up a transform listener and broadcaster for utility use self.tf = tf.TransformListener() # Pre-allocate odometry buffers for use when calculating the movement # of particles in the swarm self.lin_vel_buffer = list() self.ang_vel_buffer = list() # Receive odometry self.odom = Odometry() rospy.Subscriber("odom", Odometry, self.get_odom) # Receive laser scan self.scan = LaserScan() rospy.Subscriber(base_scan, LaserScan, self.get_scan) # Initialize particle swarm self.particles = list() for index in range(self.num_particles): self.particles.append(copy.deepcopy(Particle())) self.initiate_particles() # Sleep for a bit to allow data and transforms to be received rospy.sleep(0.2) # Create default marker for display of swarm / debug point_marker = Marker() """ Settings for particle markers with pose """ point_marker.type = Marker.ARROW point_marker.action = Marker.ADD point_marker.scale.x = 1.25 point_marker.scale.y = 0.25 point_marker.scale.z = 0.25 point_marker.color.r = 0.0 point_marker.color.g = 1.0 point_marker.color.b = 0.0 point_marker.color.a = 1.0 """ Settings for beam tracing particles point_marker.type = Marker.SPHERE point_marker.action = Marker.ADD point_marker.scale.x = 0.05 point_marker.scale.y = 0.05 point_marker.scale.z = 0.05 point_marker.color.r = 0.0 point_marker.color.g = 1.0 point_marker.color.b = 0.0 point_marker.color.a = 1.0 """ self.mark_p = MarkerPlacer("rviz_particles", "map", 1000, point_marker)
class ParticleFilter(object): """docstring for ParticleFilter""" def __init__(self, odom_rate, sens_median, sens_std_dev, vel_uniform_dist, num_particles, base_scan, start_pos=None, debug=False): # Odom rate is used for re-positioning of particles and assumed pose after applying filter self.odom_rate = odom_rate # Need sensory uncertainty distribution for calculating particle beam probabilities self.sens_median = sens_median self.sens_std_dev = sens_std_dev # Need odometry uncertainty for calculating movement probabilities self.vel_uniform_dist = vel_uniform_dist # Want to keep track of how many particles we are going to have in the swarm self.num_particles = num_particles # If there is a starting position for the robot we want to make use of it # in order to instantly converge on that spot self.start_pos = start_pos # If we want debug messages, let us know! self.debug = debug # Pre-calculate factors for calculating beam unertainty since these are # done millions of times per filter (Well... up to 50 times per beam per # particle, 30 beams or so, say 1000 particles -> 1.5 million times) self.laser_prob_f_1 = (1 / (math.sqrt(2.0*math.pi*(self.sens_std_dev**2.0)))) self.laser_prob_f_2 = -0.5 / (self.sens_std_dev**2.0) # Set up map storage facilities self.map_s = MapStorage(self.debug) # Set up a publisher for publishing the (assumed) position of the robot # found using the particle filter self.particle_p = ParticlePose("map") # Set up a transform listener and broadcaster for utility use self.tf = tf.TransformListener() # Pre-allocate odometry buffers for use when calculating the movement # of particles in the swarm self.lin_vel_buffer = list() self.ang_vel_buffer = list() # Receive odometry self.odom = Odometry() rospy.Subscriber("odom", Odometry, self.get_odom) # Receive laser scan self.scan = LaserScan() rospy.Subscriber(base_scan, LaserScan, self.get_scan) # Initialize particle swarm self.particles = list() for index in range(self.num_particles): self.particles.append(copy.deepcopy(Particle())) self.initiate_particles() # Sleep for a bit to allow data and transforms to be received rospy.sleep(0.2) # Create default marker for display of swarm / debug point_marker = Marker() """ Settings for particle markers with pose """ point_marker.type = Marker.ARROW point_marker.action = Marker.ADD point_marker.scale.x = 1.25 point_marker.scale.y = 0.25 point_marker.scale.z = 0.25 point_marker.color.r = 0.0 point_marker.color.g = 1.0 point_marker.color.b = 0.0 point_marker.color.a = 1.0 """ Settings for beam tracing particles point_marker.type = Marker.SPHERE point_marker.action = Marker.ADD point_marker.scale.x = 0.05 point_marker.scale.y = 0.05 point_marker.scale.z = 0.05 point_marker.color.r = 0.0 point_marker.color.g = 1.0 point_marker.color.b = 0.0 point_marker.color.a = 1.0 """ self.mark_p = MarkerPlacer("rviz_particles", "map", 1000, point_marker) def get_odom(self, odom): self.odom = odom # Buffer odom data for use when updating particles self.lin_vel_buffer.append(self.odom.twist.twist.linear.x) self.ang_vel_buffer.append(self.odom.twist.twist.angular.z) if self.debug: # print(self.odom) pass def get_scan(self, scan): self.scan = scan if self.debug: # print(self.scan) pass def initiate_particles(self): # If we have a starting position, use that if self.start_pos is not None: for particle in self.particles: particle.p[0] = self.start_pos[0] particle.p[1] = self.start_pos[1] particle.o = self.start_pos[2] # If we do not spread the particles out throughout the map else: min_x = self.map_s.min_x_pos max_x = self.map_s.max_x_pos min_y = self.map_s.min_y_pos max_y = self.map_s.max_y_pos for particle in self.particles: particle.randomize(min_x, max_x, min_y, max_y) def move_particles(self): # Copy and zero odom buffers lin_vel_list = self.lin_vel_buffer self.lin_vel_buffer = list() ang_vel_list = self.ang_vel_buffer self.ang_vel_buffer = list() # Store the most recent scan for use with filter after movement is # complete self.odom_synced_scan = copy.deepcopy(self.scan) # For each particle change its position and rotation according to each # buffered data input with a uniform distribution for particle in self.particles: for i in range(len(lin_vel_list)): lin_vel = lin_vel_list[i] + \ np.random.uniform(-self.vel_uniform_dist, self.vel_uniform_dist) ang_vel = ang_vel_list[i] + \ np.random.uniform(-self.vel_uniform_dist, self.vel_uniform_dist) d_theta = ang_vel / self.odom_rate d_x = (lin_vel * math.cos(particle.o))/self.odom_rate d_y = (lin_vel * math.sin(particle.o))/self.odom_rate particle.p[0] += d_x particle.p[1] += d_y particle.o += d_theta def place_markers(self): pos_list = list() or_list = list() for index in range(len(self.particles)): # print("placing markers index: " + str(index)) pos_list.append(Point(self.particles[index].p[0], self.particles[index].p[1], 0.0)) quat = quaternion_from_euler(0.0, 0.0, self.particles[index].o) or_list.append(Quaternion(quat[0], quat[1], quat[2], quat[3])) self.mark_p.place_marker(pos_list, or_list) def sensor_probability(self, meas, exp): f_2 = math.exp(self.laser_prob_f_2 * (meas-exp)**2.0) prob = self.laser_prob_f_1 * f_2 return prob def apply_filter(self): # Copy all scan parameters so that they do not change while we are # looping through all the parameters since this takes a while d_theta = self.odom_synced_scan.angle_increment scan_min_angle = self.odom_synced_scan.angle_min scan_max_angle = self.odom_synced_scan.angle_max scan_max_range = self.odom_synced_scan.range_max ranges = self.odom_synced_scan.ranges map_res = self.map_s.resolution # Make an empty list for storing the probability for each particle probability_list = list() max_probability = 0 # For all particles: min_x = self.map_s.min_x_pos max_x = self.map_s.max_x_pos min_y = self.map_s.min_y_pos max_y = self.map_s.max_y_pos for i in range(len(self.particles)): # Check if the particle is in a valid position. If it is not # regenerate the position. x_r_m = self.particles[i].p[0] y_r_m = self.particles[i].p[1] while self.map_s.xy_pos_is_occupied(x_r_m, y_r_m): self.particles[i].randomize(min_x, max_x, min_y, max_y) x_r_m = self.particles[i].p[0] y_r_m = self.particles[i].p[1] # Get P(x_r_m,y_r_m,theta_r_m) (robot in map frame) from stored # particle point_r_m = PointStamped() point_r_m.point.x = self.particles[i].p[0] point_r_m.point.y = self.particles[i].p[1] point_r_m.point.z = 0.0 point_r_m.header.frame_id = "base_link" point_r_m.header.stamp = self.tf.getLatestCommonTime("base_link", "base_laser_link") # Transform in to L(x_L_m,y_L_m,theta_L_m) (laser in map frame) # using /base_link to /base_laser_link (need a transform listener!) point_l_m = self.tf.transformPoint("base_laser_link", point_r_m) x_l_m = point_l_m.point.x y_l_m = point_l_m.point.y # The orientation of the laser scanner in the map frame is the # same as the robot, so we are taking a shortcut here theta_l_m = self.particles[i].o # Publish a transform that will be used to translate from a point # in the laser frame of reference to the laser in map frame of # reference. theta_b_l = scan_min_angle theta_b_l_max = scan_max_angle beam_index = 0 probability = 0 """ Debug to trace beam! pos_list = list() or_list = list() """ # For each beam angle theta_b_L (beam in laser frame of reference) while theta_b_l < theta_b_l_max + d_theta/10.0: # Find check angle theta_b_m = # theta_b_L + theta_L_m (beam in map frame of reference) theta_b_m = theta_l_m + theta_b_l x_slope = math.cos(theta_b_m)*float(map_res) y_slope = math.sin(theta_b_m)*float(map_res) # For each N deltaDistance, N = 1 -> # N = maxDistance/resolution, deltaDistance = map resolution for N in range(1, int(scan_max_range/map_res)): # Check if x_b_m = # x_L_m + x_b_L = # x_L_m + N*dDist*cos(theta_L_m + theta_b_L) and # y_b_m = # y_L_m + y_b_L = # y_L_m + N*dDist*sin(theta_L_m + theta_b_L) is occupied. x_b_m = x_l_m + float(N)*x_slope y_b_m = y_l_m + float(N)*y_slope """ Debug to trace beam! pos_list.append(Point(x_b_m, y_b_m, 0.0)) or_list.append(Quaternion(0.0, 0.0, 0.0, 0.0)) """ # If occupied calculate expected distance between them and # exit loop if self.map_s.xy_pos_is_occupied(x_b_m, y_b_m): exp_dist = self.dist(x_l_m, y_l_m, x_b_m, y_b_m) break # If no intersection was detected use max range as expected # distance # (PS: I was amazed this was possible - an else clause if the # break in the loop was not executed!) else: exp_dist = scan_max_range # Calculate probability for this beam angle measured_range = np.random.normal(ranges[beam_index], self.sens_std_dev) exp_dist = exp_dist """ measured_range = Decimal(ranges[beam_index]) exp_dist = Decimal(exp_dist) """ probability_beam = self.sensor_probability(measured_range, exp_dist) # Add to previous calculated probabilities probability += probability_beam # Increment theta of beam and index of beam theta_b_l += 2.0*d_theta beam_index += 2 """ Debug to trace beam self.mark_p.place_marker(pos_list, or_list) """ # Add probability for particle to list probability_list.append(probability) # Check if the beam probability is the "best", if it is store the # position as the assumed particle swarm position if probability > max_probability: max_probability = probability self.avg_x = x_r_m self.avg_y = y_r_m self.avg_theta = theta_l_m # print(probability_list) # Do hat-search using the weighting in probability list and add found # particles to new list new_list = self.hat_search(probability_list) # Assign new list to be used for next iteration self.particles = new_list def dist(self, x0, y0, x1, y1): d_x = abs(x0-x1) d_y = abs(y0-y1) return math.sqrt(d_x**2.0 + d_y**2.0) def hat_search(self, prob_list): new_part_list = list() sum_x = 0.0 sum_y = 0.0 sum_theta = 0.0 sum_count = 0 total = sum(prob_list) # Ensure that we have at least one value with probability larger than 0 if total >= 0: end_hat = len(self.particles) - len(self.particles)/20 for i in range(end_hat): rnd_num = sp.random.uniform(0.0, total) pick_index = 0 picking = True while picking: rnd_num -= prob_list[pick_index] if rnd_num <= 0: # Add x, y, theta to sum """ sum_x += self.particles[pick_index].p[0] sum_y += self.particles[pick_index].p[1] sum_theta += self.particles[pick_index].o sum_count += 1 """ new_part = Particle([self.particles[pick_index].p[0], self.particles[pick_index].p[1]], self.particles[pick_index].o) new_part_list.append(new_part) picking = False else: pick_index += 1 min_x = self.map_s.min_x_pos max_x = self.map_s.max_x_pos min_y = self.map_s.min_y_pos max_y = self.map_s.max_y_pos for i in range(end_hat, len(self.particles)): new_part = Particle() new_part.randomize(min_x, max_x, min_y, max_y) new_part_list.append(copy.deepcopy(new_part)) # If the total for some reason ended up being all zeroes let us just # use the old list, but also need to do the centre of mass calculation # for publishing centre off mass else: new_part_list = self.particles for i in range(self.particles): # Add x, y, theta to sum sum_x += self.particles[i].p[0] sum_y += self.particles[i].p[1] sum_theta += self.particles[i].o sum_count += 1 """ self.avg_x = sum_x/sum_count self.avg_y = sum_y/sum_count self.avg_theta = sum_theta/sum_count """ print("total sum: " + str(total)) return new_part_list def run(self): # First we want to update the particle locations using the most recent # odometry data self.move_particles() # Then apply filter to produce a list of new and higher probability # particles self.apply_filter() # Place a selection of markers in rviz to illustrate the particle cloud # self.mark_p.clear_markers() # self.place_markers() # Update the position with most recent odometry updates received since # particle filter was started self.update_particle_pose() # Publish the centre off mass position and orientation for particles avg_rot = quaternion_from_euler(0.0, 0.0, self.avg_theta) self.particle_p.publish(Point(self.avg_x, self.avg_y, 0.0), Quaternion(*avg_rot)) def update_particle_pose(self): lin_vel_list = self.lin_vel_buffer ang_vel_list = self.ang_vel_buffer for i in range(len(lin_vel_list)): lin_vel = lin_vel_list[i] + \ np.random.uniform(-self.vel_uniform_dist, self.vel_uniform_dist) ang_vel = ang_vel_list[i] + \ np.random.uniform(-self.vel_uniform_dist, self.vel_uniform_dist) d_theta = ang_vel / self.odom_rate d_x = (lin_vel * math.cos(self.avg_theta))/self.odom_rate d_y = (lin_vel * math.sin(self.avg_theta))/self.odom_rate self.avg_x += d_x self.avg_y += d_y self.avg_theta += d_theta