Пример #1
0
    def backward(self):
        """Backward recursion. 

        Upon completion, the following list of length T is available: 
        * smth: marginal smoothing probabilities

        Note
        ----
        Performs the forward step in case it has not been performed before. 
        """
        if not self.filt:
            self.forward()
        self.smth = [self.filt[-1]]
        log_trans = np.log(self.hmm.trans_mat)
        ctg = np.zeros(
            self.hmm.dim)  # cost to go (log-lik of y_{t+1:T} given x_t=k)
        for filt, next_ft in reversed(list(zip(self.filt[:-1],
                                               self.logft[1:]))):
            new_ctg = np.empty(self.hmm.dim)
            for k in range(self.hmm.dim):
                new_ctg[k] = rs.log_sum_exp(log_trans[k, :] + next_ft + ctg)
            ctg = new_ctg
            smth = rs.exp_and_normalise(np.log(filt) + ctg)
            self.smth.append(smth)
        self.smth.reverse()
Пример #2
0
 def filt_step(self, t, yt):
     emis = self.hmm.PY(t, None, np.arange(self.hmm.dim)).logpdf(yt)
     lp = np.log(self.pred[-1]) + emis
     logpyt = rs.log_sum_exp(lp)
     f = np.exp(lp - logpyt)
     self.logft.append(emis)
     self.logpyt.append(lp)
     self.filt.append(f)
Пример #3
0
 def update_M(self,
              new_weights: rs.Weights,
              normalize: bool,
              normalize_info: typing.Any = None):
     if normalize:
         self.pre_normalize_weights.append(self.current_weights)
         self.normalize_information.append(normalize_info)
         self.current_weights = np.log(new_weights.W)
     else:
         normalized_new_weights = ut.log(new_weights.W)
         normalization_constant_of_current_weights = rs.log_sum_exp(
             self.current_weights)
         self.current_weights = normalized_new_weights + normalization_constant_of_current_weights
Пример #4
0
 def run(self):
     self.setup()
     self.points = []
     self.log_weights = [np.log(1. - np.exp(-1. / self.N))]
     self.step()
     self.lZhats = [self.log_weights[0] + self.points[0].llik]
     while True:
         self.step()
         b = self.log_weights[-1] + self.points[-1].llik
         self.lZhats.append(log_sum_exp(self.lZhats[-1], b))
         if self.stopping_time():
             break
         next_lw = self.log_weights[-1] - 1. / self.N
         self.log_weights.append(next_lw)
         if len(self.log_weights) % self.N == 0:
             print('iteration %i: log(Z_hat) = %f' %
                   (len(self.log_weights), self.lZhats[-1]))
Пример #5
0
 def logLT(self) -> float:
     return sum([
         rs.log_sum_exp(arr)
         for arr in self.pre_normalize_weights + [self.current_weights]
     ])