Пример #1
0
def main(args):
    if not args.bam:
        ps.log("Please provide bam file")
        quit()
    else:
        ps.filecheck(args.bam)
    if not args.ref:
        ps.log("Please provide reference")
        quit()
    else:
        ps.filecheck(args.ref)
        fasta = ps.fasta(args.ref)
    if not args.prefix:
        ps.log("Please provide prefix")
        quit()
    if args.gff and args.bed:
        ps.log(
            "Please provide either a GFF file or BED file but not both...Exiting!"
        )
        quit()
    if args.gff:
        if not args.gffkey:
            ps.log(
                "Please provide the key to look for in the GFF file...Exiting!"
            )
            quit()
        else:
            ps.filecheck(args.gff)
    if args.bed: ps.filecheck(args.bed)

    cov_json = "%s.cov.json" % args.prefix
    stats_json = "%s.bam_stats.json" % args.prefix
    region_json = "%s.regions.cov.json" % args.prefix

    stats = {}

    bamqc = ps.qc_bam(args.bam, args.ref)
    for s in fasta.fa_dict:
        cov_plot = "%s.%s.cov.png" % (args.prefix, s)
        bamqc.plot_cov(s, cov_plot)
    bamqc.save_cov(cov_json)
    stats["pct_reads_mapped"] = bamqc.pct_reads_mapped
    stats["med_dp"] = bamqc.med_dp
    region_cov = {}
    if args.gff:
        region_cov = bamqc.gff_cov(args.gff, args.gffkey)
    elif args.bed:
        region_cov = bamqc.bed_cov(args.bed)
    json.dump(stats, open(stats_json, "w"))
    json.dump(region_cov, open(region_json, "w"))
Пример #2
0
def main(args):
    if not args.bam:
        ps.log("Please provide bam file")
        quit()
    else:
         ps.filecheck(args.bam)
    if not args.ref:
        ps.log("Please provide reference")
        quit()
    else:
        ps.filecheck(args.ref)
        fasta = ps.fasta(args.ref)
    if not args.prefix:
        ps.log("Please provide prefix")
        quit()
    if args.gff and args.bed:
        ps.log("Please provide either a GFF file or BED file but not both...Exiting!")
        quit()
    if args.gff:
        if not args.gffkey:
            ps.log("Please provide the key to look for in the GFF file...Exiting!")
            quit()
        else:
            ps.filecheck(args.gff)
    if args.bed: ps.filecheck(args.bed)

    cov_json = "%s.cov.json" % args.prefix
    stats_json = "%s.bam_stats.json" % args.prefix
    region_json = "%s.regions.cov.json" % args.prefix

    stats = {}

    bamqc = ps.qc_bam(args.bam,args.ref)
    for s in fasta.fa_dict:
        cov_plot = "%s.%s.cov.png" % (args.prefix,s)
        bamqc.plot_cov(s,cov_plot)
    bamqc.save_cov(cov_json)
    stats["pct_reads_mapped"] = bamqc.pct_reads_mapped
    stats["med_dp"] = bamqc.med_dp
    region_cov = {}
    if args.gff:
        region_cov = bamqc.gff_cov(args.gff,args.gffkey)
    elif args.bed:
        region_cov = bamqc.bed_cov(args.bed)
    json.dump(stats,open(stats_json,"w"))
    json.dump(region_cov,open(region_json,"w"))
Пример #3
0
def main(args):
    ref = args.ref
    r1 = args.r1
    r2 = args.r2
    prefix = args.prefix
    threads = args.threads

    stats_file = "%s.stats.json" % prefix
    gc_file = "%s.gc_skew.json" % prefix
    cov_file = "%s.regions.cov.json" % prefix
    stats = OrderedDict()
    fq = ps.fastq(prefix, ref, r1, r2, threads=threads)
    fq_qc = fq.get_fastq_qc()
    if args.centrifuge:
        t1, t2 = fq_qc.run_centrifuge(args.centrifuge, False, threads)
        stats["centrifuge_top_hit"] = t1
        stats["centrifuge_top_hit_num_reads"] = t2
    stats["mean_read_len"] = fq_qc.mean_read_len
    stats["median_read_len"] = fq_qc.median_read_len
    stats["read_num"] = fq_qc.read_num
    bam = fq.illumina(mapper=args.mapper)

    if not args.nobamstats:
        bam_qc = bam.get_bam_qc()
        stats["med_dp"] = bam_qc.med_dp
        stats["pct_reads_mapped"] = bam_qc.pct_reads_mapped
        stats["genome_cov_1"] = bam_qc.genome_cov[1]
        stats["genome_cov_10"] = bam_qc.genome_cov[10]
        fasta = ps.fasta(ref).fa_dict
        for seq in fasta:
            cov_png = "%s.%s.cov.png" % (prefix, seq)
            bam_qc.plot_cov(seq, cov_png, primers=args.primers)
        if args.bed_cov: bam_qc.save_cov(cov_file, args.bed_cov)
    bam_qc.extract_gc_skew(gc_file)
    variants = bam.gbcf(primers=args.primers,
                        chunk_size=args.window,
                        call_method=args.call_method)
    bcfstats = variants.load_stats()
    stats["hom_variants"] = bcfstats["PSC"][prefix]["nNonRefHom"]
    stats["het_variants"] = bcfstats["PSC"][prefix]["nHets"]
    stats["hom_ref"] = bcfstats["PSC"][prefix]["nRefHom"]
    json.dump(stats, open(stats_file, "w"))
Пример #4
0
def main(args):
    ref = args.ref
    r1 = args.reads
    prefix = args.prefix
    threads = args.threads

    stats_file = "%s.stats.json" % prefix
    gc_file = "%s.gc_skew.json" % prefix
    cov_file = "%s.regions.cov.json" % prefix
    stats = OrderedDict()
    fq = ps.fastq(prefix, ref, r1, threads=threads)
    fq_qc = fq.get_fastq_qc()
    stats["mean_read_len"] = fq_qc.mean_read_len
    stats["median_read_len"] = fq_qc.median_read_len
    stats["read_num"] = fq_qc.read_num
    if args.centrifuge:
        t1, t2 = fq_qc.run_centrifuge(args.centrifuge, False, threads)
        stats["centrifuge_top_hit"] = t1
        stats["centrifuge_top_hit_num_reads"] = t2
    bam = fq.minION()
    bam_qc = bam.get_bam_qc()
    stats["med_dp"] = bam_qc.med_dp
    stats["pct_reads_mapped"] = bam_qc.pct_reads_mapped
    stats["genome_cov_1"] = bam_qc.genome_cov[1]
    stats["genome_cov_10"] = bam_qc.genome_cov[10]
    fasta = ps.fasta(ref).fa_dict
    for seq in fasta:
        cov_png = "%s.%s.cov.png" % (prefix, seq)
        bam_qc.plot_cov(seq, cov_png, primers=args.primers)
    bam_qc.extract_gc_skew(gc_file)
    if args.bed_cov: bam_qc.save_cov(cov_file, args.bed_cov)
    variants = bam.pileup2vcf(indels=False)
    bcf = bam.gbcf(threads=threads,
                   primers=args.primers,
                   chunk_size=args.window)
    bcf.generate_consensus(ref)
    bcfstats = bcf.load_stats()
    stats["hom_variants"] = bcfstats["PSC"][prefix]["nNonRefHom"]
    stats["het_variants"] = bcfstats["PSC"][prefix]["nHets"]
    stats["hom_ref"] = bcfstats["PSC"][prefix]["nRefHom"]
    json.dump(stats, open(stats_file, "w"))
Пример #5
0
def main(args):
	ref = args.ref
	r1 = args.r1
	r2 = args.r2
	prefix = args.prefix
	threads = args.threads


	stats_file = "%s.stats.json" % prefix
	gc_file = "%s.gc_skew.json" % prefix
	cov_file = "%s.regions.cov.json" % prefix
	stats = OrderedDict()
	fq = ps.fastq(prefix,ref,r1,r2,threads=threads)
	fq_qc = fq.get_fastq_qc()
	if args.centrifuge:
		t1,t2 = fq_qc.run_centrifuge(args.centrifuge,False,threads)
		stats["centrifuge_top_hit"] = t1
		stats["centrifuge_top_hit_num_reads"] = t2
	stats["mean_read_len"] = fq_qc.mean_read_len
	stats["median_read_len"] = fq_qc.median_read_len
	stats["read_num"] = fq_qc.read_num
	bam = fq.illumina(mapper=args.mapper)

	if not args.nobamstats:
		bam_qc = bam.get_bam_qc()
		stats["med_dp"] = bam_qc.med_dp
		stats["pct_reads_mapped"] = bam_qc.pct_reads_mapped
		stats["genome_cov_1"] = bam_qc.genome_cov[1]
		stats["genome_cov_10"] = bam_qc.genome_cov[10]
		fasta = ps.fasta(ref).fa_dict
		for seq in fasta:
			cov_png = "%s.%s.cov.png" % (prefix,seq)
			bam_qc.plot_cov(seq,cov_png,primers=args.primers)
		if args.bed_cov: bam_qc.save_cov(cov_file,args.bed_cov)
	bam_qc.extract_gc_skew(gc_file)
	variants = bam.gbcf(primers=args.primers,chunk_size=args.window,call_method=args.call_method)
	bcfstats = variants.load_stats()
	stats["hom_variants"] = bcfstats["PSC"][prefix]["nNonRefHom"]
	stats["het_variants"] = bcfstats["PSC"][prefix]["nHets"]
	stats["hom_ref"] = bcfstats["PSC"][prefix]["nRefHom"]
	json.dump(stats,open(stats_file,"w"))
Пример #6
0
args["fasta_db"] = sys.argv[5]
args["threads"] = sys.argv[6]
args["fq_report"] = ps.get_random_file()
args["log"] = ps.get_random_file()
cmd = "centrifuge -x %(centrifuge_db)s -1 %(r1)s -2 %(r2)s -S %(log)s --report-file %(fq_report)s -p %(threads)s" % args
ps.run_cmd(cmd)

best_ref = ""
best_score = 0
best_species = ""
best_species_score = 0
for l in open(args["fq_report"]):
    row = l.rstrip().split("\t")
    if row[4] == "numReads": continue
    if row[2] == "leaf" and int(row[4]) > best_score:
        best_ref = row[0]
        best_score = int(row[4])
    elif row[2] == "species" and int(row[4]) > best_species_score:
        best_species = row[0]
        best_species_score = int(row[4])

fasta = ps.fasta(args["fasta_db"]).fa_dict
open("%s.fa" % best_ref, "w").write(">%s\n%s\n" % (best_ref, fasta[best_ref]))
ps.rm_files([args["fq_report"], args["log"]])
json.dump(
    {
        "sample": args["prefix"],
        "best_ref": best_ref,
        "best_species": best_species
    }, open("%(prefix)s.centrifuge.json" % args, "w"))
Пример #7
0
def main(args):
	fasta = ps.fasta(args.fasta)
	fasta.add_meta_data(args.data_file,args.outfile,args.delimiter)
Пример #8
0
def main(args):
	if args.bed:
		ps.split_bed(args.bed,args.size,reformat=args.reformat)
	else:
		fasta = ps.fasta(args.fasta)
		fasta.splitchr(args.size,reformat=args.reformat)
Пример #9
0
import sys
import pathogenseq as ps

infile = sys.argv[1]
bcf = ps.bcf(infile)
stats = bcf.load_stats()
#stats = {'PSC': {'barcode07_run1_batch1': {'nHets': 798,'nNonRefHom': 38,'nRefHom': 276198}}}
if len(sys.argv)>2:
	genome_len = sum([len(x) for x in ps.fasta(sys.argv[2]).fa_dict.values()])
if len(sys.argv)>2:
	print "sample\tnRefHom\tnNonRefHom\tnHets\tnMissing"
else:
	print "sample\tnRefHom\tnNonRefHom\tnHets"
for sample in stats["PSC"]:
	s = stats["PSC"][sample]
	if len(sys.argv)>2:
		tot_sum = s["nRefHom"]+s["nNonRefHom"]+s["nHets"]
		print "%s\t%s\t%s\t%s\t%s" % (sample,s["nRefHom"],s["nNonRefHom"],s["nHets"],genome_len-tot_sum)
	else:
		print "%s\t%s\t%s\t%s" % (sample,s["nRefHom"],s["nNonRefHom"],s["nHets"])
Пример #10
0
args["r1"] = sys.argv[1]
args["r2"] = sys.argv[2]
args["prefix"] = sys.argv[3]
args["centrifuge_db"] = sys.argv[4]
args["fasta_db"] = sys.argv[5]
args["threads"] = sys.argv[6]
args["fq_report"] = ps.get_random_file()
args["log"] = ps.get_random_file()
cmd = "centrifuge -x %(centrifuge_db)s -1 %(r1)s -2 %(r2)s -S %(log)s --report-file %(fq_report)s -p %(threads)s" % args
ps.run_cmd(cmd)

best_ref = ""
best_score = 0
best_species = ""
best_species_score = 0
for l in open(args["fq_report"]):
	row = l.rstrip().split("\t")
	if row[4]=="numReads": continue
	if row[2]=="leaf" and int(row[4])>best_score:
		best_ref = row[0]
		best_score = int(row[4])
	elif row[2]=="species" and int(row[4])>best_species_score:
		best_species = row[0]
		best_species_score = int(row[4])


fasta = ps.fasta(args["fasta_db"]).fa_dict
open("%s.fa" % best_ref,"w").write(">%s\n%s\n" % (best_ref,fasta[best_ref]))
ps.rm_files([args["fq_report"],args["log"]])
json.dump({"sample":args["prefix"],"best_ref":best_ref,"best_species":best_species},open("%(prefix)s.centrifuge.json" % args,"w"))
Пример #11
0
def main(args):
    fasta = ps.fasta(args.fasta)
    fasta.add_meta_data(args.data_file, args.outfile, args.delimiter)
Пример #12
0
#! /usr/bin/env python
import sys
import pathogenseq as ps
import json

infile = sys.argv[1]
ref = sys.argv[2]
outfile = sys.argv[3]
bcf = ps.bcf(infile)
stats = bcf.load_stats(convert=True, ref=ref)
genome_len = sum([len(x) for x in ps.fasta(ref).fa_dict.values()])

print("sample\tnRefHom\tnNonRefHom\tnHets\tnMissing")
for sample in stats["PSC"]:
    s = stats["PSC"][sample]
    s["id"] = sample
    tot_sum = s["nRefHom"] + s["nNonRefHom"] + s["nHets"]
    s["missing"] = genome_len - tot_sum
    print("%s\t%s\t%s\t%s\t%s" %
          (sample, s["nRefHom"], s["nNonRefHom"], s["nHets"], s["missing"]))
    json.dump(s, open(outfile, "w"))
Пример #13
0
#! /usr/bin/env python
import sys
import pathogenseq as ps
import json

infile = sys.argv[1]
ref = sys.argv[2]
outfile = sys.argv[3]
bcf = ps.bcf(infile)
stats = bcf.load_stats(convert=True,ref=ref)
genome_len = sum([len(x) for x in ps.fasta(ref).fa_dict.values()])

print("sample\tnRefHom\tnNonRefHom\tnHets\tnMissing")
for sample in stats["PSC"]:
	s = stats["PSC"][sample]
	s["id"] = sample
	tot_sum = s["nRefHom"]+s["nNonRefHom"]+s["nHets"]
	s["missing"] = genome_len-tot_sum
	print("%s\t%s\t%s\t%s\t%s" % (sample,s["nRefHom"],s["nNonRefHom"],s["nHets"],s["missing"]))
	json.dump(s,open(outfile,"w"))