Пример #1
0
def run_parallel_gray(gfile, qargs, hosts):

    g_ = load_graph(gfile)
    query_, cond_, _, _, _, _ = parse_args(qargs)

    # Find query candidates
    q_seed_ = list(query_.nodes())[0]
    kl = Condition.get_node_label(query_, q_seed_)
    kp = Condition.get_node_props(query_, q_seed_)
    seeds = Condition.filter_nodes(g_, kl, kp)  # Find all candidates
    if not seeds:  ## No seed candidates
        print("No more seed vertices available. Exit G-Ray algorithm.")
        return

    # Split seed list
    num_seeds = len(seeds)
    num_hosts = len(hosts)
    num_members = num_seeds / num_hosts
    seed_lists = list()
    for i in range(num_hosts):
        st = i * num_members
        ed = num_seeds if (i == num_hosts - 1) else (i + 1) * num_members
        seed_lists.append(seeds[st:ed])

    servers = tuple([":".join([addr, port]) for addr in hosts])

    st = time.time()
    pool = Pool(1, servers=servers)
    ret = pool.amap(
        partial(process_multiple_gray,
                g_file=gfile,
                q_seed=q_seed_,
                q_args=qargs), seed_lists)
    print(ret.get())

    pool.close()
    pool.join()
    ed = time.time()
    print("Parallel G-Ray time: %f" % (ed - st))
Пример #2
0
#!/usr/bin/env python
#
# Author: Mike McKerns (mmckerns @caltech and @uqfoundation)
# Copyright (c) 1997-2016 California Institute of Technology.
# Copyright (c) 2016-2018 The Uncertainty Quantification Foundation.
# License: 3-clause BSD.  The full license text is available at:
#  - https://github.com/uqfoundation/pathos/blob/master/LICENSE

from pathos.parallel import stats
from pathos.parallel import ParallelPool as Pool
pool = Pool()


def host(id):
    import socket
    import time
    time.sleep(1.0)
    return "Rank: %d -- %s" % (id, socket.gethostname())


print("Evaluate 10 items on 2 cpus")  #FIXME: reset lport below
pool.ncpus = 2
pool.servers = ('localhost:5653', )
res5 = pool.map(host, range(10))
print(pool)
print('\n'.join(res5))
print(stats())
print('')

# end of file
Пример #3
0
from functools import partial

sys.path.append(".")
from patternmatching.gray.parallel.query_call import parse_args
from patternmatching.gray import rwr, extract
from patternmatching.query.Condition import *


# https://stackoverflow.com/questions/26876898/python-multiprocessing-with-distributed-cluster/26948258
def sleepy_squared(x):
    from time import sleep
    sleep(0.5)
    return x**2


p = Pool(4)
res = p.amap(sleepy_squared, range(10))
print(res.get())

################

port = "5000"


def load_graph(graph_json):
    with open(graph_json, "r") as f:
        json_data = json.load(f)
        graph = json_graph.node_link_graph(json_data)
    numv = graph.number_of_nodes()
    nume = graph.number_of_edges()
    print("Input Graph: " + str(numv) + " vertices, " + str(nume) + " edges")