Пример #1
0
class LegoPatternDetector(object):
    def __init__(self):
        self.homography = self.compute_homography()
        self.pattern = SharedPattern()

    def compute_homography(self):
        src_points = json.load(open('rect.json'))
        dst_points = [[0, 0], [GRID_SIZE, 0], [GRID_SIZE, GRID_SIZE],
                      [0, GRID_SIZE]]
        return cv2.findHomography(numpy.asarray(src_points, float),
                                  numpy.asarray(dst_points, float))[0]

    def process_image(self, img):
        img = cv2.warpPerspective(img, self.homography, (GRID_SIZE, GRID_SIZE))
        self.update_notes(img)
        self.mute_tracks(img)
        return img

    def update_notes(self, img):
        for track in range(self.pattern.num_tracks):
            for step in range(self.pattern.num_steps):
                color = average_cell_color_hsv(img, track, step)
                if is_clear_color_hsv(color):
                    self.pattern.clear_step(track, step)
                elif is_note_color_hsv(color):
                    self.pattern.set_step(track, step)

    def mute_tracks(self, img):
        for track in range(self.pattern.num_tracks):
            color = average_cell_color_hsv(img, track + 8, 0)
            if is_clear_color_hsv(color):
                self.pattern.unmute(track)
            else:
                self.pattern.mute(track)
Пример #2
0
class LegoPatternDetector(object):
    def __init__(self):
        self.homography = self.compute_homography()
        self.pattern = SharedPattern()

    def compute_homography(self):
        src_points = json.load(open('rect.json'))
        dst_points = [
            [0, 0],
            [GRID_SIZE, 0],
            [GRID_SIZE, GRID_SIZE],
            [0, GRID_SIZE]]
        return cv2.findHomography(
            numpy.asarray(src_points, float),
            numpy.asarray(dst_points, float))[0]

    def process_image(self, img):
        img = cv2.warpPerspective(img, self.homography, (GRID_SIZE, GRID_SIZE))
        self.update_notes(img)
        self.mute_tracks(img)
        return img

    def update_notes(self, img):
        for track in range(self.pattern.num_tracks):
            for step in range(self.pattern.num_steps):
                color = average_cell_color_hsv(img, track, step)
                if is_clear_color_hsv(color):
                    self.pattern.clear_step(track, step)
                elif is_note_color_hsv(color):
                    self.pattern.set_step(track, step)

    def mute_tracks(self, img):
        for track in range(self.pattern.num_tracks):
            color = average_cell_color_hsv(img, track + 8, 0)
            if is_clear_color_hsv(color):
                self.pattern.unmute(track)
            else:
                self.pattern.mute(track)
Пример #3
0
 def __init__(self):
     self.homography = self.compute_homography()
     self.pattern = SharedPattern()
Пример #4
0
 def __init__(self):
     self.homography = self.compute_homography()
     self.pattern = SharedPattern()