Пример #1
0
 def start(self, args):
     decls = []
     body = []
     # consts = []
     for arg in args:
         if type(arg) == Declaration:
             decls.append(arg)
         elif type(arg) in [AbstractLoop, Assignment]:
             body.append(arg)
         else:
             raise RuntimeError('Unsupported syntax in main program')
     # Add implicit constants that are created when the bounds and steps
     # of loop vars are not explicitly stated
     non_consts = set()
     for decl in decls:
         non_consts.add(decl.name)
     for stmt in body:
         for loop in get_loops(stmt):
             for shape in loop.loop_shapes:
                 non_consts.add(shape.loop_var.var)
     consts_set = set()
     for stmt in body:
         for access in get_accesses(stmt):
             if access.var not in non_consts:
                 consts_set.add(access.var)
     consts = [Const(name) for name in sorted(list(consts_set))]
     return Program(decls, body, consts)
Пример #2
0
    def transform(self, pattern, tries=None):
        dependence_graph, pattern_with_ids = analyze_dependence(pattern)

        if tries is None:
            tries = NTries(10)

        while tries.next():
            cloned = pattern_with_ids.clone()
            is_legal = True
            for loop in get_loops(cloned):
                order = randomize_loop_order(loop)
                if not is_permutable(dependence_graph, loop, order):
                    is_legal = False
                    break
                reorder(order, loop.loop_shapes)
            if is_legal:
                yield cloned
Пример #3
0
def create_instance_with_fixed_size(pattern, size):
    def set_exact_loop_bounds(var_map, loop_var, min_val, max_val):
        lower_bound = f'{loop_var}_greater_eq'
        var_map.set_min(lower_bound, min_val)
        var_map.set_max(lower_bound, min_val)
        upper_bound = f'{loop_var}_less_eq'
        var_map.set_min(upper_bound, max_val)
        var_map.set_max(upper_bound, max_val)

    loops = get_loops(pattern)
    loop_shapes = gather_loop_shapes(loops)
    loop_vars = gather_loop_vars(loop_shapes)

    # instance
    var_map = VariableMap(default_max=size)
    for loop_var in set(loop_vars):
        set_exact_loop_bounds(var_map, loop_var, 0, size-1)

    instance = create_instance(pattern, var_map)
    return instance
Пример #4
0
    def try_once():
        random_pattern = replace_constant_variables_blindly(pattern, var_map)
        cvars = get_scalar_cvars(random_pattern)
        accesses = get_accesses(random_pattern)
        cloned_var_map = var_map.clone()

        # Set array sizes in var map
        for decl in random_pattern.decls:
            for dimension in range(decl.n_dimensions):
                size = decl.sizes[dimension]
                if size is not None:
                    dim_var = dimension_var(decl.name, dimension)
                    # TODO: we don't really need min
                    cloned_var_map.set_min(dim_var, 0)
                    # TODO: maybe allow more room for the max
                    cloned_var_map.set_max(dim_var, size)

        index_constraints = generate_index_constraints(accesses,
                                                       cvars,
                                                       cloned_var_map)

        loop_shape_constraints = []
        for loop in get_loops(random_pattern):
            loop_shape_constraints += generate_loop_shape_constraints(loop.loop_shapes,
                                                                      cvars,
                                                                      cloned_var_map)

        bound_constraints = generate_bound_constraints(random_pattern.decls, cvars, cloned_var_map)

        l.debug('Index constraints:\n' + '\n'.join(map(str, index_constraints)))
        l.debug('Loop shape constraints:\n' + '\n'.join(map(str, loop_shape_constraints)))
        l.debug('Bound constraints:\n' + '\n'.join(map(str, bound_constraints)))

        assert(len(index_constraints) > 0)
        invert_index_constraints = Not(And(index_constraints))

        constraints = [invert_index_constraints] + loop_shape_constraints + bound_constraints

        solver = Solver()
        solver.set('timeout', 10000)
        solver.add(constraints)
        status = solver.check()
        if status != unsat:
            l.debug(f'Constraints are not unsatisfiable ({status}). '
                    'May result in index out of bound')
            l.debug('Constraints:\n' + '\n'.join(map(str, constraints)))
            if status == sat:
                l.debug(f'Model:\n{solver.model()}')
            return None

        constraints = index_constraints + loop_shape_constraints + bound_constraints
        solver = Solver()
        solver.set('timeout', 10000)
        solver.add(constraints)
        status = solver.check()
        if status != sat:
            l.debug(f'Constraints are not satisfiable ({status}). '
                    'May result in no iterations')
            l.debug('\n'.join(map(str, constraints)))
            return None

        bounds = determine_array_access_bounds(random_pattern.decls,
                                               accesses, cvars,
                                               constraints,
                                               cloned_var_map, l)
        if bounds is None:
            return None

        # assign types once we're sure it's a valid program
        nonlocal types
        if types is None:
            types = TypeAssignment()
        assign_types(random_pattern, types)
        return Instance(random_pattern, bounds)
Пример #5
0
    def transform(self, pattern):
        pattern_with_ids = assign_node_ids(pattern)
        loops = get_loops(pattern_with_ids)
        loop_vars = []
        for loop in loops:
            loop_id = loop.attributes['node_id']
            for shape in loop.loop_shapes:
                assert(type(shape.loop_var) == Access)
                loop_vars.append((loop_id, shape.loop_var.var))

        # sort by depth
        def depth_rec(node, id_var_pair, current_depth):
            loop_id, loop_var = id_var_pair
            if type(node) == Program:
                for stmt in node.body:
                    return depth_rec(stmt, id_var_pair, current_depth+1)
            elif type(node) == AbstractLoop:
                if node.attributes['node_id'] == loop_id:
                    for i, shape in enumerate(node.loop_shapes):
                        if shape.loop_var.var == loop_var:
                            return (current_depth, i)
                    raise RuntimeError(f'Loop var {loop_var} not found in {node.pprint()}')
                for stmt in node.body:
                    return depth_rec(stmt, id_var_pair, current_depth+1)
            else:
                return (current_depth + 1, 0)

        def depth(id_var_pair):
            return depth_rec(pattern_with_ids, id_var_pair, 0)

        sorted_loop_vars = sorted(loop_vars, key=depth, reverse=True)

        # TODO: assign unique node ids
        while True:
            cloned = pattern_with_ids.clone()

            for loop_id, loop_var in sorted_loop_vars:
                factor = random.randint(1, self.max_factor)
                if factor == 1:
                    continue
                loops = get_loops(cloned)
                loop = None
                for l in loops:
                    if l.attributes['node_id'] == loop_id:
                        loop = l
                assert(loop is not None)
                loop_shapes_before = []
                loop_shapes_after = []
                loop_var_index = None
                unroll_shape = None
                remainder_shape = None

                is_unrollable = True

                for i, shape in enumerate(loop.loop_shapes):
                    if shape.loop_var.var == loop_var:
                        loop_var_index = i
                        original_step = shape.step.clone()

                        # Build the unroll shape
                        # only support literals for simplicity
                        logger.info('trying')
                        if (type(shape.greater_eq) != Literal or shape.greater_eq.ty != int or
                            type(shape.less_eq) != Literal or shape.less_eq.ty != int or
                            type(shape.step) != Literal or shape.step.ty != int):
                            is_unrollable = False
                            break

                        logger.info('passed')

                        unroll_greater_eq = shape.greater_eq.val
                        unroll_step = shape.step.val * factor
                        unroll_n_iterations = (shape.less_eq.val - shape.greater_eq.val + shape.step.val) // (shape.step.val * factor)
                        unroll_less_eq = unroll_greater_eq + ((unroll_n_iterations - 1) * unroll_step)
                        unroll_shape = LoopShape(shape.loop_var.clone(),
                                                 Literal(int, unroll_greater_eq),
                                                 Literal(int, unroll_less_eq),
                                                 Literal(int, unroll_step))

                        # Build the remainder shape
                        remainder_greater_eq = unroll_less_eq + unroll_step
                        remainder_less_eq = shape.less_eq.val
                        remainder_step = shape.step.val
                        remainder_shape = LoopShape(shape.loop_var.clone(),
                                                    Literal(int, remainder_greater_eq),
                                                    Literal(int, remainder_less_eq),
                                                    Literal(int, remainder_step))
                        break
                    else:
                        loop_shapes_before.append(shape)

                if not is_unrollable:
                    print(f'{loop_var} is not unrollable')
                    continue
                assert(loop_var_index is not None)
                assert(unroll_shape is not None)
                assert(remainder_shape is not None)

                for shape in loop.loop_shapes[loop_var_index+1:]:
                    loop_shapes_after.append(shape)

                unrolled_body = []
                for f in range(0, factor):
                    unrolled_innermost_body = []
                    step = loop.loop_shapes[loop_var_index].step
                    assert(type(step) == Literal)
                    assert(step.ty == int)
                    replacer = UnrollReplacer(loop_var, f * step.val)
                    for stmt in loop.body:
                        unrolled_stmt = stmt.clone()
                        unrolled_stmt.replace(replacer)
                        unrolled_innermost_body.append(unrolled_stmt)
                    if len(loop_shapes_after) == 0:
                        unrolled_body += unrolled_innermost_body
                    else:
                        shapes = [shape.clone() for shape in loop_shapes_after]
                        unrolled_body.append(AbstractLoop(shapes,
                                                          unrolled_innermost_body))

                remainder_innermost_body = [stmt.clone() for stmt in loop.body]
                if len(loop_shapes_after) == 0:
                    remainder_body = remainder_innermost_body
                else:
                    shapes = [shape.clone() for shape in loop_shapes_after]
                    remainder_body = [AbstractLoop(shapes, remainder_innermost_body)]

                unrolled_loop = AbstractLoop([unroll_shape], unrolled_body)
                remainder_loop = AbstractLoop([remainder_shape], remainder_body)

                # The unroll sequence is the unrolled loop followed by the remainder loop
                if len(loop_shapes_before) == 0:
                    unroll_sequence = [unrolled_loop, remainder_loop]
                else:
                    # The surrounding loop needs to preserve the loop_id
                    # since the surrounding loops may be unrolled as well
                    unroll_sequence = [AbstractLoop(loop_shapes_before,
                                                    [unrolled_loop, remainder_loop],
                                                    loop_id)]

                # Replace the original loop with the unroll sequence
                index = loop.surrounding_loop.find_stmt(loop)
                loop.surrounding_loop.remove_stmt(loop)
                loop.surrounding_loop.insert_stmts(index, unroll_sequence)

            yield cloned