Пример #1
0
def load_pointcloud(pc_filename):
    pointcloud = pc_util.read_xyzrgb_ply(pc_filename)
    return pointcloud
Пример #2
0
                         sampling='seed_fps',
                         num_class=DC.num_class).to(device)
    print('Constructed model.')

    # Load checkpoint
    optimizer = optim.Adam(net.parameters(), lr=0.001)
    checkpoint = torch.load(checkpoint_path)
    net.load_state_dict(checkpoint['model_state_dict'])
    optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
    epoch = checkpoint['epoch']
    print("Loaded checkpoint %s (epoch: %d)" % (checkpoint_path, epoch))

    # Load and preprocess input point cloud
    net.eval()  # set model to eval mode (for bn and dp)
    # point_cloud = read_ply(pc_path)
    point_cloud = read_xyzrgb_ply(pc_path)
    pc = preprocess_point_cloud(point_cloud)
    print('Loaded point cloud data: %s' % (pc_path))

    # Model inference
    inputs = {'point_clouds': torch.from_numpy(pc).to(device)}
    tic = time.time()
    with torch.no_grad():
        end_points = net(inputs)
    toc = time.time()
    print('Inference time: %f' % (toc - tic))
    end_points['point_clouds'] = inputs['point_clouds']

    if not os.path.exists(dump_dir): os.mkdir(dump_dir)
    MODEL.dump_results(end_points, dump_dir, DC, True)
    print('Dumped detection results to folder %s' % (dump_dir))