""" import matplotlib.pyplot as plot plot.figure(random.randint(0, 10000000)) plot.scatter(data[0], data[1], 20, 'b', 'o') plot.title(filename.split('.')[0]) for line in lines: plot.plot([line[0], line[2]], [line[1], line[3]], '-') plot.savefig(filename) def T(a): return a.reshape(len(a), 1) x = load('pcaData.txt') U, s, x_rot = pca.pca(x) scatter('raw-scatterplot.png', x, [((0, 0) + tuple(r)) for r in U.T]) scatter('x-rot.png', x_rot) k = 1 U, s, xHat = pca.pca(x, k) scatter('xHat.png', np.vstack([xHat, xHat])) xPCAwhite = pca.pca_whiten(x) scatter('xPCAwhite.png', xPCAwhite) xZCAwhite = pca.zca_whiten(x) scatter('xZCAwhite.png', xZCAwhite)
x_hat = np.dot(U[:, :k], small_x_rot) display_network.display_network('99-reduced.png', x_hat) # first index greater than 90% k = np.min(np.where(pov >= 0.90)) print 'k:', k U, s, small_x_rot = pca.pca(patches, k=k) x_hat = np.dot(U[:, :k], small_x_rot) display_network.display_network('90-reduced.png', x_hat) # first index greater than 50% k = np.min(np.where(pov >= 0.50)) print 'k:', k U, s, small_x_rot = pca.pca(patches, k=k) x_hat = np.dot(U[:, :k], small_x_rot) display_network.display_network('50-reduced.png', x_hat) epsilon = 0.1 x_pca_white = pca.pca_whiten(patches, epsilon=epsilon) c = pca.covariance(x_pca_white) display_network.array_to_file('pca_white_covariance.png', c) epsilon = 0.0 x_pca_white = pca.pca_whiten(patches, epsilon=epsilon) c = pca.covariance(x_pca_white) display_network.array_to_file('pca_white_noreg_covariance.png', c) for epsilon in [1, 0.1, 0.01]: x_zca_white = pca.zca_whiten(patches, epsilon=epsilon) display_network.display_network('zca_%s.png' % epsilon, x_zca_white)
k = np.min(np.where(pov >= 0.90)) print 'k:', k U, s, small_x_rot = pca.pca(patches, k=k) x_hat = np.dot(U[:,:k], small_x_rot) display_network.display_network('90-reduced.png', x_hat) # first index greater than 50% k = np.min(np.where(pov >= 0.50)) print 'k:', k U, s, small_x_rot = pca.pca(patches, k=k) x_hat = np.dot(U[:,:k], small_x_rot) display_network.display_network('50-reduced.png', x_hat) epsilon = 0.1 x_pca_white = pca.pca_whiten(patches, epsilon=epsilon) c = pca.covariance(x_pca_white) display_network.array_to_file('pca_white_covariance.png', c) epsilon = 0.0 x_pca_white = pca.pca_whiten(patches, epsilon=epsilon) c = pca.covariance(x_pca_white) display_network.array_to_file('pca_white_noreg_covariance.png', c) for epsilon in [1, 0.1, 0.01]: x_zca_white = pca.zca_whiten(patches, epsilon=epsilon) display_network.display_network('zca_%s.png' % epsilon, x_zca_white)
""" import matplotlib.pyplot as plot plot.figure(random.randint(0, 10000000)) plot.scatter(data[0], data[1], 20, 'b', 'o') plot.title(filename.split('.')[0]) for line in lines: plot.plot([line[0], line[2]], [line[1], line[3]], '-') plot.savefig(filename) def T(a): return a.reshape(len(a), 1) x = load('pcaData.txt') U, s, x_rot = pca.pca(x) scatter('raw-scatterplot.png', x, [((0,0)+tuple(r)) for r in U.T]) scatter('x-rot.png', x_rot) k = 1 U, s, xHat = pca.pca(x, k) scatter('xHat.png', np.vstack([xHat, xHat])) xPCAwhite = pca.pca_whiten(x) scatter('xPCAwhite.png', xPCAwhite) xZCAwhite = pca.zca_whiten(x) scatter('xZCAwhite.png', xZCAwhite)