def _load(self):
        with open(self.lbl_path, 'r') as f:
            parser = Parser()
            labels = parser.parse(f)

            record_bytes = int(labels['RECORD_BYTES'])
            nrecords = int(labels['FILE_RECORDS'])

        columns = defaultdict(list)
        with open(self.data_path, 'rb') as f:
            for i in range(nrecords):
                for cname, cstart, ctype, citems, _ in ELS.COLUMNS:
                    # Subtract 1 because they are indexed from 1 in the .FMT
                    f.seek(i * record_bytes + cstart - 1)
                    columns[cname].append(
                        f.read(np.dtype(ctype).itemsize * citems))

        for cname, _, ctype, citems, missing in ELS.COLUMNS:
            cstr = ''.join(columns[cname])
            col = np.fromstring(cstr, dtype=ctype, count=nrecords * citems)
            col = np.squeeze(col.reshape((nrecords, citems)))

            # Replace missing value with NaN
            if missing is not None:
                col[col == missing] = np.nan

            # Apply post-processing steps to appropriate columns
            if cname in ELS.POSTPROCESS:
                col = ELS.POSTPROCESS[cname](col)

            # Store column as object attribute
            setattr(self, cname, col)

        # Add iso_data by summing across theta/phi
        self.iso_data = np.sum(self.data, axis=(-2, -1))

        # Compute DEF, DNF, and PSD
        self.def_data = compute_def(self.dim1_e, self.data)
        self.dnf_data = compute_dnf(self.dim1_e, self.def_data)
        self.psd_data = compute_psd(self.dim1_e, self.def_data)
Пример #2
0
def get_labels(fname):
    parser = Parser()
    labels = parser.parse(open_pds(fname))
    return labels
Пример #3
0
        # with StringIO.StringIO(pdsContents) as pdsFile:
        # with open_pds(pdsContents) as pdsFile:
        pdsFile = open_pds(StringIO.StringIO(pdsContents))
        # pdsFile = open_pds(pdsContents)
        if options.step_through:
            sys.stderr.write(
                "stepping through files... press enter to continue\n")
            raw_input()

        if options.verbose:
            errorMessage = "Reading input from '%s'\n" % (pdsFilename)
            sys.stderr.write(errorMessage)

        labels = None
        try:
            labels = pdsParser.parse(pdsFile)
            # labels = pdsParser.parse(open_pds(pdsFile))
        except:
            if options.ignore_exceptions:
                if options.verbose:
                    errorMessage = "Warn: Caught exception raised while parsing of '%s', ignoring\n" % (
                        pdsFilename)
                    sys.stderr.write(errorMessage)
            else:
                # If not ignoring caught exceptions, re-raise.
                raise
        finally:
            pdsFile.close()

        if not labels:
            errorMessage = "Error: Could not parse %s: no labels were found\n" % (
Пример #4
0
		# support for fileinput and *StringIO.
		# with StringIO.StringIO(pdsContents) as pdsFile:
		# with open_pds(pdsContents) as pdsFile:
		pdsFile = open_pds(StringIO.StringIO(pdsContents))
		# pdsFile = open_pds(pdsContents)
		if options.step_through:
			sys.stderr.write("stepping through files... press enter to continue\n")
			raw_input()

		if options.verbose:
			errorMessage = "Reading input from '%s'\n" % (pdsFilename)
			sys.stderr.write(errorMessage)

		labels = None
		try:
			labels = pdsParser.parse(pdsFile)
			# labels = pdsParser.parse(open_pds(pdsFile))
		except:
			if options.ignore_exceptions:
				if options.verbose:
					errorMessage = "Warn: Caught exception raised while parsing of '%s', ignoring\n" % (pdsFilename)
					sys.stderr.write(errorMessage)
			else:
				# If not ignoring caught exceptions, re-raise.
				raise
		finally:
			pdsFile.close()

		if not labels:
			errorMessage = "Error: Could not parse %s: no labels were found\n" % (options.filename)
			sys.stderr.write(errorMessage)
Пример #5
0
  def load_image(self, name, rootdir, show=False, rgb=False, ext='.IMG', lblext='.LBL_label'):
      imgpath = rootdir + name + ext
      lblpath = rootdir + name + lblext

      parser = Parser()

      labels = parser.parse(open_pds(lblpath))

      h = int(labels['IMAGE']['LINES'])
      w = int(labels['IMAGE']['LINE_SAMPLES'])

      #print "h: %d, w: %d, type: %s" % (h, w, labels['IMAGE']['SAMPLE_TYPE'])
      if labels['IMAGE']['SAMPLE_TYPE'] == 'UNSIGNED_INTEGER':
          dt = "uint" + labels['IMAGE']['SAMPLE_BITS']
          #pprint(labels['IMAGE'])
          imgarr = np.fromfile(imgpath, dtype=dt, sep="")
          imgarr = imgarr.astype('uint8')
          
      elif labels['IMAGE']['SAMPLE_TYPE'] == 'MSB_UNSIGNED_INTEGER':
          #dt = "uint" + labels['IMAGE']['SAMPLE_BITS']
          dt = ">u" + str(int(labels['IMAGE']['SAMPLE_BITS'])/8)
          #pprint(labels['IMAGE'])
          imgarr = np.fromfile(imgpath, dtype=dt, sep="")
          #print imgarr.dtype
          imgarr = imgarr.byteswap().newbyteorder()
          #print imgarr.dtype
          #imgarr = np.bitwise_and(4095, imgarr)
          imgarr = imgarr.astype('float16')
          imgarr = imgarr / 4095 * 255
          raw_input("WARNING.  THE CODE HAS JUST CHANGED THE DATA VALUES FROM float16 TO uint8.\n"
                    " THIS WAS INITIALLY DONE FOR VISUALIZATION BUT HAS CAUSED PROBLEMS.\n"
                    "  PLEASE FIX, IF POSSIBLE!  NEEDS RE-TYPING OF ALL ARRAYS.\n"
                    "\n"
                    "ALSO, THE RADIANCE OFFSET AND SCALING FACTOR IN THE LOG FILES NEED TO BE APPLIED.\n"
                    "\n"
                    "    ...press enter if you really want to continue. ")
          imgarr = imgarr.astype('uint8')
          
      else:
          print "Error: unknown sample type: %s" % labels['IMAGE']['SAMPLE_TYPE']
          exit()

      L = len(imgarr)
      B = int(labels['IMAGE']['BANDS'])
      
      #print "%7d  %s  %s" % (B, name, labels['INSTRUMENT_STATE_PARMS']['FILTER_NAME'])
      
      if B == 1:
        #print "One band: %s" % name
        #print imgarr.shape
        pass
      X = L / B
      #print "len: %d, h*w: %d, bands: %d, div: %d" % (L, h*w, B, X)
      assert (L % B == 0)
      #print "max: %d, min: %d, mean: %d" % (max(imgarr), min(imgarr), np.mean(imgarr))
      
      if B == 3:
        img = np.zeros((h, w, B), dtype='uint8')
        for b in range(B):
          img[...,b] = imgarr[b*X:(b+1)*X].reshape([h, w])
      elif B == 1:
        img = imgarr.reshape([h,w])
        img2 = np.zeros((h, w, 1), dtype='uint8')
        img2[:,:,0] = img
        img = img2
      else:
        # should never get here
        print "Error: Your dimensionality is ridiculous."
        print "   Why does the image have %d bands?" % B
        exit(-1)
      
      if show:
        img_show = PIL.Image.fromarray(img)
        img_show.save(os.path.join('mastcam_images', '%s_temp.png' % name))
      
      return (img, labels)
Пример #6
0
  def read_mastcam_dir(self, filepath, suffix, unit, feature, extension = '.IMG', lblext='.LBL_label', eye='LR', margin=6):
    """read_mastcam_dir(filepath, extension)
    
    Read in all files with given extension in the folder given by filepath and save to a pickle.
    The pickle is called filepath/kepler.extension.pkl
    """
    
    if eye == 'L':
      eyez = 'ML'
    elif eye == 'R':
      eyez = 'MR'
    elif eye == 'LR':
      eyez = ''
      pass
    else:
      raise ValueError('Eye name %s is not valid!  Use L, R, or LR.' % eye)
    
    # GET ALL FILES WITH GIVEN EXTENSION IN FILEPATH
    files = sorted(glob.glob(str(filepath) + "*" + eyez + "*" + str(suffix) + "*" + str(extension)))
    fileprefixes = sorted(list(set([f.split('/')[-1][0:12] for f in files])))
    print fileprefixes
    
    print "found %d files among %d sequences with eye %s and extension %s in %s:" % (len(files), len(fileprefixes), eye, extension, filepath)
    assert len(files) > 0
    
    numfiles = len(fileprefixes)
    seen = 0
    percent = 0.0
    printed = [False for foo in range(1000)]
        
    fullimages = {}
    segmentation = {}

    data = []
    self.labels = []
    
    for fileprefix in fileprefixes:
      print "  " + fileprefix    
    
      thissequence = sorted(glob.glob(str(filepath) + fileprefix + "*" + str(suffix) + "*" + str(extension)))
      asdfghjkl = 0
      
      parser = Parser()
      seqfiltstr = ""
      dimlist = []
      for w in thissequence:
        labels = parser.parse(open_pds(w.replace(extension, lblext))) 
        filt = labels['INSTRUMENT_STATE_PARMS']['FILTER_NAME'][9]
        seqfiltstr += filt
        h = int(labels['IMAGE']['LINES'])
        w = int(labels['IMAGE']['LINE_SAMPLES'])
        dimlist.append([h, w])
        #print "    %s %s %s" % (filt, h, w)

        print "Filter name:", labels['INSTRUMENT_STATE_PARMS']['FILTER_NAME']
        
      #print seqfiltstr
      # print dimlist
      seqstocombine = []
      
      # Handle cases which appear to be several series of observations
      if len(seqfiltstr) % 7 == 0:
        for i in range(len(seqfiltstr) / 7):
          subseq = thissequence[7*i:7*i+7]
          subseqfilt = seqfiltstr[7*i:7*i+7]
          if subseqfilt == '0123456':
            cont = False
            for j in range(7*i, 7*i+7):
              if dimlist[7*i] != dimlist[j]:
                print "SIZE ERROR"
                cont = True
            if cont:
                continue
            
            seqstocombine.append(subseq)
            
          else:
            if seqfiltstr == '00112233445566':
              seq1 = [thissequence[2*i] for i in range(len(thissequence)/2)]
              seq2 = [thissequence[2*i+1] for i in range(len(thissequence)/2)]
              
              seqstocombine.append(seq1)
              seqstocombine.append(seq2)
              
              break
            else:
              print "Length multiple of 7 but bad sequence"

      # Non-7 number of observations
      else:
        for i in range(len(seqfiltstr)):
          subseq = thissequence[i:i+7]
          subseqfilt = seqfiltstr[i:i+7]
          if subseqfilt == '0123456':
            cont = False
            for j in range(i, i+7):
              if dimlist[i] != dimlist[j]:
                print "SIZE ERROR"
                cont = True
            if cont: continue
            
            seqstocombine.append(subseq)
      
      # No actual multispectral images exist, so use all RGB (sol 388)
      if len(seqstocombine) == 0 and 'sol388' in self.archive:
        seqstocombine = [[f] for f in thissequence]
              
      # Now, download each sequence with this prefix
      for subseq in seqstocombine:
        qwertyuiop = 0
        bigimage = None
        
        err = False
        # Get each image within sequence
        for filename in subseq:
          namestem = filename.split('.')[0].split('/')[-1]

          try:
            (image, lbls) = self.load_image(namestem, filepath, ext=extension, lblext=lblext)
          except ValueError as e:
            #print "An error happened while processing %s" % filename
            err = True
            break

          (h, w, b) = image.shape
          
          if b == 3:
            self.rgbdict[fileprefix + str(asdfghjkl)] = namestem
            fullimages[fileprefix + str(asdfghjkl)] = image
            #print "Stored %s to rgbdict" % (fileprefix + str(asdfghjkl))
          
          if bigimage == None and 'sol388' not in filepath:
            bigimage = np.zeros([h, w, 9], dtype='uint8')
          elif bigimage == None:
            bigimage = np.zeros([h, w, b], dtype='uint8')
            
          bigimage[:,:,qwertyuiop:qwertyuiop+b] = image

          qwertyuiop += b
          

        # Reorder images based on camera so filters are ordered
        if eye in ['L', 'R']:
          bi = np.zeros([h, w, 9], dtype='uint8')
          if eye == 'L':
            bi[:, :, 0] = bigimage[:, :, 0]
            bi[:, :, 1] = bigimage[:, :, 1]
            bi[:, :, 2] = bigimage[:, :, 2]
            bi[:, :, 3] = bigimage[:, :, 4]
            bi[:, :, 4] = bigimage[:, :, 3]
            bi[:, :, 5] = bigimage[:, :, 6]
            bi[:, :, 6] = bigimage[:, :, 5]
            bi[:, :, 7] = bigimage[:, :, 7]
            bi[:, :, 8] = bigimage[:, :, 8]
          elif eye == 'R':
            bi[:, :, 0] = bigimage[:, :, 2]
            bi[:, :, 1] = bigimage[:, :, 1]
            bi[:, :, 2] = bigimage[:, :, 0]
            bi[:, :, 3] = bigimage[:, :, 4]
            bi[:, :, 4] = bigimage[:, :, 3]
            bi[:, :, 5] = bigimage[:, :, 5]
            bi[:, :, 6] = bigimage[:, :, 6]
            bi[:, :, 7] = bigimage[:, :, 7]
            bi[:, :, 8] = bigimage[:, :, 8]
          bigimage = bi

        if err:
          print "   ...didn't load sequence.  There was an error."
          continue
          
        print "   ...loaded one sequence:", (fileprefix + str(asdfghjkl))
        
        if 'sol388' not in self.archive:
          name = fileprefix + str(asdfghjkl) + '_' + unit + '_' + feature
        else:
          name =  namestem + '_' + unit + '_' + feature

        
        (segments, segmentlabels) = self.segment_image(bigimage, unit=unit)
        segmentation[fileprefix + str(asdfghjkl)] = segments[0][1]

        for i in range(len(segments)):
          data += [[float(x) for x in self.process_image(segments[i], name + segmentlabels[i], feature=feature)]]
        
        asdfghjkl += 1
        
        ###########################################
      
      seen += 1
      
      # output read-in progress
      if percent < 100:
        if (round((seen / float(numfiles)) * 100, 1) >= percent) and (printed[int(percent * 10)] == False):
          #print "...%3.1f%%..." % percent
          printed[int(percent * 10)] == True
          percent = round(((seen / float(numfiles)) * 100), 1) + 1
    print "...100%..."
    print "Transposing data..."
    data = np.array(data).T
    self.xvals.sort()
    
    # Output the pickle
    print "Writing pickle to " + self.archive + " ..."
    outf = open(self.archive, 'w')
    pickle.dump((data, fullimages, segmentation, self.labels, self.xlabel, self.ylabel, self.xvals, self.rgbdict, self.lblext, self.initdata, self.initfilename), outf)
    outf.close()
    print "Wrote pickle to " + self.archive
Пример #7
0
			if sample == missingconst:
				#print '.',
				pass
			else:
				pass
				#if value>minval and value<maxval: debug( 'ok' )
				#else: debug( 'out of range' )
				#print value ,
			#debug( value )


p = Parser()

filename = '/tmp/x.img'
file = open_pds(filename)
label = p.parse( file )

if '--label' in string.join(sys.argv):
	pprint(label)
	sys.exit(0)

if '--debug' in string.join(sys.argv): debugon=True

status = verify_label(label)
if status!='ok':
	debug('error:',status)
else:
	debug('label verified')
	print_info(label)

process_samples( filename, label )
Пример #8
0
  def load_image(self, name, rootdir, show=False, rgb=False, ext='.IMG', lblext='.LBL_label'):
      imgpath = rootdir + name + ext
      lblpath = rootdir + name + lblext

      parser = Parser()

      labels = parser.parse(open_pds(lblpath))

      h = int(labels['IMAGE']['LINES'])
      w = int(labels['IMAGE']['LINE_SAMPLES'])

      #print "h: %d, w: %d, type: %s" % (h, w, labels['IMAGE']['SAMPLE_TYPE'])
      if labels['IMAGE']['SAMPLE_TYPE'] == 'UNSIGNED_INTEGER':
          dt = "uint" + labels['IMAGE']['SAMPLE_BITS']
          #pprint(labels['IMAGE'])
          imgarr = np.fromfile(imgpath, dtype=dt, sep="")
          imgarr = imgarr.astype('uint8')
          
      elif labels['IMAGE']['SAMPLE_TYPE'] == 'MSB_UNSIGNED_INTEGER':
          #dt = "uint" + labels['IMAGE']['SAMPLE_BITS']
          dt = ">u" + str(int(labels['IMAGE']['SAMPLE_BITS'])/8)
          #pprint(labels['IMAGE'])
          imgarr = np.fromfile(imgpath, dtype=dt, sep="")
          #print imgarr.dtype
          imgarr = imgarr.byteswap().newbyteorder()
          #print imgarr.dtype
          #imgarr = np.bitwise_and(4095, imgarr)
          imgarr = imgarr.astype('float16')
          imgarr = imgarr / 4095 * 255
          raw_input("WARNING.  THE CODE HAS JUST CHANGED THE DATA VALUES FROM float16 TO uint8.\n"
                    " THIS WAS INITIALLY DONE FOR VISUALIZATION BUT HAS CAUSED PROBLEMS.\n"
                    "  PLEASE FIX, IF POSSIBLE!  NEEDS RE-TYPING OF ALL ARRAYS.\n"
                    "\n"
                    "ALSO, THE RADIANCE OFFSET AND SCALING FACTOR IN THE LOG FILES NEED TO BE APPLIED.\n"
                    "\n"
                    "    ...press enter if you really want to continue. ")
          imgarr = imgarr.astype('uint8')
          
      else:
          print "Error: unknown sample type: %s" % labels['IMAGE']['SAMPLE_TYPE']
          exit()

      L = len(imgarr)
      B = int(labels['IMAGE']['BANDS'])
      
      #print "%7d  %s  %s" % (B, name, labels['INSTRUMENT_STATE_PARMS']['FILTER_NAME'])
      
      if B == 1:
        #print "One band: %s" % name
        #print imgarr.shape
        pass
      X = L / B
      #print "len: %d, h*w: %d, bands: %d, div: %d" % (L, h*w, B, X)
      assert (L % B == 0)
      #print "max: %d, min: %d, mean: %d" % (max(imgarr), min(imgarr), np.mean(imgarr))
      
      if B == 3:
        img = np.zeros((h, w, B), dtype='uint8')
        for b in range(B):
          img[...,b] = imgarr[b*X:(b+1)*X].reshape([h, w])
      elif B == 1:
        img = imgarr.reshape([h,w])
        img2 = np.zeros((h, w, 1), dtype='uint8')
        img2[:,:,0] = img
        img = img2
      else:
        # should never get here
        print "Error: Your dimensionality is ridiculous."
        print "   Why does the image have %d bands?" % B
        exit(-1)
      
      if show:
        img_show = PIL.Image.fromarray(img)
        img_show.save(os.path.join('mastcam_images', '%s_temp.png' % name))
      
      return (img, labels)
Пример #9
0
  def read_mastcam_dir(self, filepath, suffix, unit, feature, extension = '.IMG', lblext='.LBL_label', eye='LR', margin=6):
    """read_mastcam_dir(filepath, extension)
    
    Read in all files with given extension in the folder given by filepath and save to a pickle.
    The pickle is called filepath/kepler.extension.pkl
    """
    
    if eye == 'L':
      eyez = 'ML'
    elif eye == 'R':
      eyez = 'MR'
    elif eye == 'LR':
      eyez = ''
      pass
    else:
      raise ValueError('Eye name %s is not valid!  Use L, R, or LR.' % eye)
    
    # GET ALL FILES WITH GIVEN EXTENSION IN FILEPATH
    files = sorted(glob.glob(str(filepath) + "*" + eyez + "*" + str(suffix) + "*" + str(extension)))
    fileprefixes = sorted(list(set([f.split('/')[-1][0:12] for f in files])))
    print fileprefixes
    
    print "found %d files among %d sequences with eye %s and extension %s in %s:" % (len(files), len(fileprefixes), eye, extension, filepath)
    assert len(files) > 0
    
    numfiles = len(fileprefixes)
    seen = 0
    percent = 0.0
    printed = [False for foo in range(1000)]
        
    fullimages = {}
    segmentation = {}

    data = []
    self.labels = []
    
    for fileprefix in fileprefixes:
      print "  " + fileprefix    
    
      thissequence = sorted(glob.glob(str(filepath) + fileprefix + "*" + str(suffix) + "*" + str(extension)))
      asdfghjkl = 0
      
      parser = Parser()
      seqfiltstr = ""
      dimlist = []
      for w in thissequence:
        labels = parser.parse(open_pds(w.replace(extension, lblext))) 
        filt = labels['INSTRUMENT_STATE_PARMS']['FILTER_NAME'][9]
        seqfiltstr += filt
        h = int(labels['IMAGE']['LINES'])
        w = int(labels['IMAGE']['LINE_SAMPLES'])
        dimlist.append([h, w])
        #print "    %s %s %s" % (filt, h, w)

        print "Filter name:", labels['INSTRUMENT_STATE_PARMS']['FILTER_NAME']
        
      #print seqfiltstr
      # print dimlist
      seqstocombine = []
      
      # Handle cases which appear to be several series of observations
      if len(seqfiltstr) % 7 == 0:
        for i in range(len(seqfiltstr) / 7):
          subseq = thissequence[7*i:7*i+7]
          subseqfilt = seqfiltstr[7*i:7*i+7]
          if subseqfilt == '0123456':
            cont = False
            for j in range(7*i, 7*i+7):
              if dimlist[7*i] != dimlist[j]:
                print "SIZE ERROR"
                cont = True
            if cont:
                continue
            
            seqstocombine.append(subseq)
            
          else:
            if seqfiltstr == '00112233445566':
              seq1 = [thissequence[2*i] for i in range(len(thissequence)/2)]
              seq2 = [thissequence[2*i+1] for i in range(len(thissequence)/2)]
              
              seqstocombine.append(seq1)
              seqstocombine.append(seq2)
              
              break
            else:
              print "Length multiple of 7 but bad sequence"

      # Non-7 number of observations
      else:
        for i in range(len(seqfiltstr)):
          subseq = thissequence[i:i+7]
          subseqfilt = seqfiltstr[i:i+7]
          if subseqfilt == '0123456':
            cont = False
            for j in range(i, i+7):
              if dimlist[i] != dimlist[j]:
                print "SIZE ERROR"
                cont = True
            if cont: continue
            
            seqstocombine.append(subseq)
      
      # No actual multispectral images exist, so use all RGB (sol 388)
      if len(seqstocombine) == 0 and 'sol388' in self.archive:
        seqstocombine = [[f] for f in thissequence]
              
      # Now, download each sequence with this prefix
      for subseq in seqstocombine:
        qwertyuiop = 0
        bigimage = None
        
        err = False
        # Get each image within sequence
        for filename in subseq:
          namestem = filename.split('.')[0].split('/')[-1]

          try:
            (image, lbls) = self.load_image(namestem, filepath, ext=extension, lblext=lblext)
          except ValueError as e:
            #print "An error happened while processing %s" % filename
            err = True
            break

          (h, w, b) = image.shape
          
          if b == 3:
            self.rgbdict[fileprefix + str(asdfghjkl)] = namestem
            fullimages[fileprefix + str(asdfghjkl)] = image
            #print "Stored %s to rgbdict" % (fileprefix + str(asdfghjkl))
          
          if bigimage == None and 'sol388' not in filepath:
            bigimage = np.zeros([h, w, 9], dtype='uint8')
          elif bigimage == None:
            bigimage = np.zeros([h, w, b], dtype='uint8')
            
          bigimage[:,:,qwertyuiop:qwertyuiop+b] = image

          qwertyuiop += b
          

        # Reorder images based on camera so filters are ordered
        if eye in ['L', 'R']:
          bi = np.zeros([h, w, 9], dtype='uint8')
          if eye == 'L':
            bi[:, :, 0] = bigimage[:, :, 0]
            bi[:, :, 1] = bigimage[:, :, 1]
            bi[:, :, 2] = bigimage[:, :, 2]
            bi[:, :, 3] = bigimage[:, :, 4]
            bi[:, :, 4] = bigimage[:, :, 3]
            bi[:, :, 5] = bigimage[:, :, 6]
            bi[:, :, 6] = bigimage[:, :, 5]
            bi[:, :, 7] = bigimage[:, :, 7]
            bi[:, :, 8] = bigimage[:, :, 8]
          elif eye == 'R':
            bi[:, :, 0] = bigimage[:, :, 2]
            bi[:, :, 1] = bigimage[:, :, 1]
            bi[:, :, 2] = bigimage[:, :, 0]
            bi[:, :, 3] = bigimage[:, :, 4]
            bi[:, :, 4] = bigimage[:, :, 3]
            bi[:, :, 5] = bigimage[:, :, 5]
            bi[:, :, 6] = bigimage[:, :, 6]
            bi[:, :, 7] = bigimage[:, :, 7]
            bi[:, :, 8] = bigimage[:, :, 8]
          bigimage = bi

        if err:
          print "   ...didn't load sequence.  There was an error."
          continue
          
        print "   ...loaded one sequence:", (fileprefix + str(asdfghjkl))
        
        if 'sol388' not in self.archive:
          name = fileprefix + str(asdfghjkl) + '_' + unit + '_' + feature
        else:
          name =  namestem + '_' + unit + '_' + feature

        
        (segments, segmentlabels) = self.segment_image(bigimage, unit=unit)
        segmentation[fileprefix + str(asdfghjkl)] = segments[0][1]

        for i in range(len(segments)):
          data += [[float(x) for x in self.process_image(segments[i], name + segmentlabels[i], feature=feature)]]
        
        asdfghjkl += 1
        
        ###########################################
      
      seen += 1
      
      # output read-in progress
      if percent < 100:
        if (round((seen / float(numfiles)) * 100, 1) >= percent) and (printed[int(percent * 10)] == False):
          #print "...%3.1f%%..." % percent
          printed[int(percent * 10)] == True
          percent = round(((seen / float(numfiles)) * 100), 1) + 1
    print "...100%..."
    print "Transposing data..."
    data = np.array(data).T
    self.xvals.sort()
    
    # Output the pickle
    print "Writing pickle to " + self.archive + " ..."
    outf = open(self.archive, 'w')
    pickle.dump((data, fullimages, segmentation, self.labels, self.xlabel, self.ylabel, self.xvals, self.rgbdict, self.lblext, self.initdata, self.initfilename), outf)
    outf.close()
    print "Wrote pickle to " + self.archive