Пример #1
0
def problem51():
    primes = primesUpTo(10 ** 7)
    for p in primes[1229:]:
        m = str(p)
        for i in ['0', '1', '2']:
            if m.count(i) == 3 and primes8(m, i):
                return p
Пример #2
0
def problem35():
	from PE_primes import primesUpTo, isPrime
	# count is 1 is we are not count 2 later
	count = 1
	# remove all primes that contain an even number, since those will have a cyclic shift that is even
	primesList = {p for p in primesUpTo(10**6) if isMadeOfOdd(p)}
	for p in primesList:
		if all(q in primesList for q in iCyclicShifts(p)):
			count += 1
	return count
Пример #3
0
def problem49():
    primes = primesUpTo(10000)
    for a in dropwhile(lambda x: x <= 1487, primes):
        # the bound comes from wanting c = 2b - a ≤ 10000
        for b in dropwhile(lambda x: x <= a, primes):
            if b >= (10000 + a) / 2:
                break
            c = b + (b - a)
            # Do the same digits first since I think that is the most time
            # consuming part
            if sameDigits(a, b) and sameDigits(b, c) and isPrime(c):
                return int(str(a) + str(b) + str(c))
Пример #4
0
def problem70():
    GOAL = 10 ** 7
    primes = primesUpTo(2 * int(GOAL ** (1 / 2)))
    record = 1000000000
    for index, p in enumerate(primes[1:]):
        for q in primes[index:]:
            if q > GOAL // p:
                break
            n = p * q
            ph = (p - 1) * (q - 1)
            if isPermutation(n, ph) and n / ph < record:
                record = n / ph
                recordN = n
    return recordN
Пример #5
0
def problem50():	
	GOAL = 10**6
	listOfPrimes = primesUpTo(GOAL)
	recordLength = 21
	maxPrime = 953
	for index in count():
		for length, running in enumerate(accumulate(listOfPrimes[index:])):
			if length + 1 > recordLength and isPrime(running):
				recordLength = length + 1
				maxPrime = running
			if running > GOAL:
				break
		# If there is no hope, break out
		if sum(listOfPrimes[index: index+recordLength]) > GOAL:
			break
	return maxPrime
Пример #6
0
def problem46():
    primesList = primesUpTo(10 ** 4)
    for l in range(1, 10 ** 4):
        n = 2 * l + 1
        flag = True
        if not (n in primesList):
            a = 1
            while 2 * a ** 2 < n:
                q = n - 2 * a ** 2
                if q in primesList:
                    flag = False
                    break
                a += 1
        else:
            flag = False
        if flag:
            return n
Пример #7
0
def problem27():
    record = 0
    ab = 0
    checker = Orderedlist(primesUpTo(1998))
    # We know there is a record of 80
    # this removes many possibilities for low values of b
    # since the most number of primes for f(n) is b-1
    for b in checker[80:1000]:
        for p1 in checker[0:1000 + b + 1]:
            a = p1 - b - 1
            n = 2
            p2 = a + p1 + (2 * n - 1)
            while isPrime(abs(p2)):
                n += 1
                p2 = a + p2 + (2 * n - 1)
            if n > record:
                record = n
                ab = a * b
    return ab
Пример #8
0
def problem7():
	''' We have a crude bound on the number of primes given by x/ln(x)
	Thus we need 10001 < x/ln(x) and 200000 works'''
	primes = primesUpTo( 200000)
	return primes[10001-1]
Пример #9
0
def problem10():
	return sum(primesUpTo(2*10**6))