Пример #1
0
def net_fle(
    data: MultimodalData,
    file_name: str = None,
    n_jobs: int = -1,
    rep: str = "diffmap",
    K: int = 50,
    full_speed: bool = False,
    target_change_per_node: float = 2.0,
    target_steps: int = 5000,
    is3d: bool = False,
    memory: int = 8,
    random_state: int = 0,
    select_frac: float = 0.1,
    select_K: int = 25,
    select_alpha: float = 1.0,
    net_alpha: float = 0.1,
    polish_target_steps: int = 1500,
    out_basis: str = "net_fle",
) -> None:
    """Construct Net-Force-directed (FLE) graph.

    Net-FLE is an approximated FLE graph using Deep Learning model to improve the speed.

    In specific, the deep model used is MLPRegressor_, the *scikit-learn* implementation of Multi-layer Perceptron regressor.

    See [Li20]_ for details.

    .. _MLPRegressor: https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPRegressor.html

    Parameters
    ----------
    data: ``pegasusio.MultimodalData``
        Annotated data matrix with rows for cells and columns for genes.

    file_name: ``str``, optional, default: ``None``
        Temporary file to store the coordinates as the input to forceatlas2. If ``None``, use ``tempfile.mkstemp`` to generate file name.

    n_jobs: ``int``, optional, default: ``-1``
        Number of threads to use. If ``-1``, use all available threads.

    rep: ``str``, optional, default: ``"diffmap"``
        Representation of data used for the calculation. By default, use Diffusion Map coordinates. If ``None``, use the count matrix ``data.X``.

    K: ``int``, optional, default: ``50``
        Number of nearest neighbors to be considered during the computation.

    full_speed: ``bool``, optional, default: ``False``
        * If ``True``, use multiple threads in constructing ``hnsw`` index. However, the kNN results are not reproducible.
        * Otherwise, use only one thread to make sure results are reproducible.

    target_change_per_node: ``float``, optional, default: ``2.0``
        Target change per node to stop ForceAtlas2.

    target_steps: ``int``, optional, default: ``5000``
        Maximum number of iterations before stopping the ForceAtlas2 algorithm.

    is3d: ``bool``, optional, default: ``False``
        If ``True``, calculate 3D force-directed layout.

    memory: ``int``, optional, default: ``8``
        Memory size in GB for the Java FA2 component. By default, use 8GB memory.

    random_state: ``int``, optional, default: ``0``
        Random seed set for reproducing results.

    select_frac: ``float``, optional, default: ``0.1``
        Down sampling fraction on the cells.

    select_K: ``int``, optional, default: ``25``
        Number of neighbors to be used to estimate local density for each data point for down sampling.

    select_alpha: ``float``, optional, default: ``1.0``
        Weight the down sample to be proportional to ``radius ** select_alpha``.

    net_alpha: ``float``, optional, default: ``0.1``
        L2 penalty (regularization term) parameter of the deep regressor.

    polish_target_steps: ``int``, optional, default: ``1500``
        After running the deep regressor to predict new coordinate, Number of ForceAtlas2 iterations.

    out_basis: ``str``, optional, default: ``"net_fle"``
        Key name for calculated FLE coordinates to store.

    Returns
    -------
    ``None``

    Update ``data.obsm``:
        * ``data.obsm['X_' + out_basis]``: Net FLE coordinates of the data.

    Update ``data.obs``:
        * ``data.obs['ds_selected']``: Boolean array to indicate which cells are selected during the down sampling phase.

    Examples
    --------
    >>> pg.net_fle(data)
    """

    if file_name is None:
        if file_name is None:
            import tempfile

            _, file_name = tempfile.mkstemp()

    n_jobs = effective_n_jobs(n_jobs)
    rep = update_rep(rep)

    if ("W_" + rep) not in data.uns:
        neighbors(
            data,
            K=K,
            rep=rep,
            n_jobs=n_jobs,
            random_state=random_state,
            full_speed=full_speed,
        )

    indices_key = rep + "_knn_indices"
    distances_key = rep + "_knn_distances"

    if not knn_is_cached(data, indices_key, distances_key, select_K):
        raise ValueError("Please run neighbors first!")

    selected = select_cells(
        data.uns[distances_key],
        select_frac,
        K=select_K,
        alpha=select_alpha,
        random_state=random_state,
    )

    X_full = X_from_rep(data, rep)
    X = X_full[selected, :]

    ds_indices_key = "ds_" + rep + "_knn_indices"
    ds_distances_key = "ds_" + rep + "_knn_distances"
    indices, distances = calculate_nearest_neighbors(X,
                                                     K=K,
                                                     n_jobs=n_jobs,
                                                     random_state=random_state,
                                                     full_speed=full_speed)
    data.uns[ds_indices_key] = indices
    data.uns[ds_distances_key] = distances

    W = calculate_affinity_matrix(indices, distances)

    X_fle = calc_force_directed_layout(
        W,
        file_name + ".small",
        n_jobs,
        target_change_per_node,
        target_steps,
        is3d,
        memory,
        random_state,
    )

    data.uns["X_" + out_basis + "_small"] = X_fle
    data.obs["ds_diffmap_selected"] = selected

    n_components = 2 if not is3d else 3
    Y_init = np.zeros((data.shape[0], n_components), dtype=np.float64)
    Y_init[selected, :] = X_fle
    Y_init[~selected, :] = net_train_and_predict(X,
                                                 X_fle,
                                                 X_full[~selected, :],
                                                 net_alpha,
                                                 random_state,
                                                 verbose=True)

    data.obsm["X_" + out_basis + "_pred"] = Y_init

    data.obsm["X_" + out_basis] = calc_force_directed_layout(
        W_from_rep(data, rep),
        file_name,
        n_jobs,
        target_change_per_node,
        polish_target_steps,
        is3d,
        memory,
        random_state,
        init=Y_init,
    )
Пример #2
0
def net_tsne(
    data: MultimodalData,
    rep: str = "pca",
    n_jobs: int = -1,
    n_components: int = 2,
    perplexity: float = 30,
    early_exaggeration: int = 12,
    learning_rate: float = 1000,
    random_state: int = 0,
    select_frac: float = 0.1,
    select_K: int = 25,
    select_alpha: float = 1.0,
    net_alpha: float = 0.1,
    polish_learning_frac: float = 0.33,
    polish_n_iter: int = 150,
    out_basis: str = "net_tsne",
) -> None:
    """Calculate Net-tSNE embedding of cells.

    Net-tSNE is an approximated tSNE embedding using Deep Learning model to improve the calculation speed.

    In specific, the deep model used is MLPRegressor_, the *scikit-learn* implementation of Multi-layer Perceptron regressor.

    See [Li20]_ for details.

    .. _MLPRegressor: https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPRegressor.html

    Parameters
    ----------
    data: ``pegasusio.MultimodalData``
        Annotated data matrix with rows for cells (``n_obs``) and columns for genes (``n_feature``).

    rep: ``str``, optional, default: ``"pca"``
        Representation of data used for the calculation. By default, use PCA coordinates. If ``None``, use the count matrix ``data.X``.

    n_jobs: ``int``, optional, default: ``-1``
        Number of threads to use. If ``-1``, use all available threads.

    n_components: ``int``, optional, default: ``2``
        Dimension of calculated tSNE coordinates. By default, generate 2-dimensional data for 2D visualization.

    perplexity: ``float``, optional, default: ``30``
        The perplexity is related to the number of nearest neighbors used in other manifold learning algorithms. Larger datasets usually require a larger perplexity.

    early_exaggeration: ``int``, optional, default: ``12``
        Controls how tight natural clusters in the original space are in the embedded space, and how much space will be between them.

    learning_rate: ``float``, optional, default: ``1000``
        The learning rate can be a critical parameter, which should be between 100 and 1000.

    random_state: ``int``, optional, default: ``0``
        Random seed set for reproducing results.

    select_frac: ``float``, optional, default: ``0.1``
        Down sampling fraction on the cells.

    select_K: ``int``, optional, default: ``25``
        Number of neighbors to be used to estimate local density for each data point for down sampling.

    select_alpha: ``float``, optional, default: ``1.0``
        Weight the down sample to be proportional to ``radius ** select_alpha``.

    net_alpha: ``float``, optional, default: ``0.1``
        L2 penalty (regularization term) parameter of the deep regressor.

    polish_learning_frac: ``float``, optional, default: ``0.33``
        After running the deep regressor to predict new coordinates, use ``polish_learning_frac`` * ``n_obs`` as the learning rate to polish the coordinates.

    polish_n_iter: ``int``, optional, default: ``150``
        Number of iterations for polishing tSNE run.

    out_basis: ``str``, optional, default: ``"net_tsne"``
        Key name for the approximated tSNE coordinates calculated.

    Returns
    -------
    ``None``

    Update ``data.obsm``:
        * ``data.obsm['X_' + out_basis]``: Net tSNE coordinates of the data.

    Update ``data.obs``:
        * ``data.obs['ds_selected']``: Boolean array to indicate which cells are selected during the down sampling phase.

    Examples
    --------
    >>> pg.net_tsne(data)
    """

    rep = update_rep(rep)
    indices_key = rep + "_knn_indices"
    distances_key = rep + "_knn_distances"

    if not knn_is_cached(data, indices_key, distances_key, select_K):
        raise ValueError("Please run neighbors first!")

    n_jobs = effective_n_jobs(n_jobs)

    selected = select_cells(
        data.uns[distances_key],
        select_frac,
        K=select_K,
        alpha=select_alpha,
        random_state=random_state,
    )

    X_full = X_from_rep(data, rep)
    X = X_full[selected, :]
    X_tsne = calc_tsne(
        X,
        n_jobs,
        n_components,
        perplexity,
        early_exaggeration,
        learning_rate,
        random_state,
    )

    data.uns["X_" + out_basis + "_small"] = X_tsne
    data.obs["ds_selected"] = selected

    Y_init = np.zeros((data.shape[0], n_components), dtype=np.float64)
    Y_init[selected, :] = X_tsne
    Y_init[~selected, :] = net_train_and_predict(X,
                                                 X_tsne,
                                                 X_full[~selected, :],
                                                 net_alpha,
                                                 random_state,
                                                 verbose=True)

    data.obsm["X_" + out_basis + "_pred"] = Y_init

    polish_learning_rate = polish_learning_frac * data.shape[0]
    data.obsm["X_" + out_basis] = calc_tsne(
        X_full,
        n_jobs,
        n_components,
        perplexity,
        early_exaggeration,
        polish_learning_rate,
        random_state,
        init=Y_init,
        n_iter=polish_n_iter,
        n_iter_early_exag=0,
    )
Пример #3
0
def net_umap(
    data: MultimodalData,
    rep: str = "pca",
    n_jobs: int = -1,
    n_components: int = 2,
    n_neighbors: int = 15,
    min_dist: float = 0.5,
    spread: float = 1.0,
    random_state: int = 0,
    select_frac: float = 0.1,
    select_K: int = 25,
    select_alpha: float = 1.0,
    full_speed: bool = False,
    net_alpha: float = 0.1,
    polish_learning_rate: float = 10.0,
    polish_n_epochs: int = 30,
    out_basis: str = "net_umap",
) -> None:
    """Calculate Net-UMAP embedding of cells.

    Net-UMAP is an approximated UMAP embedding using Deep Learning model to improve the speed.

    In specific, the deep model used is MLPRegressor_, the *scikit-learn* implementation of Multi-layer Perceptron regressor.

    See [Li20]_ for details.

    .. _MLPRegressor: https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPRegressor.html

    Parameters
    ----------
    data: ``pegasusio.MultimodalData``
        Annotated data matrix with rows for cells and columns for genes.

    rep: ``str``, optional, default: ``"pca"``
        Representation of data used for the calculation. By default, use PCA coordinates. If ``None``, use the count matrix ``data.X``.

    n_components: ``int``, optional, default: ``2``
        Dimension of calculated UMAP coordinates. By default, generate 2-dimensional data for 2D visualization.

    n_neighbors: ``int``, optional, default: ``15``
        Number of nearest neighbors considered during the computation.

    min_dist: ``float``, optional, default: ``0.5``
        The effective minimum distance between embedded data points.

    spread: ``float``, optional, default: ``1.0``
        The effective scale of embedded data points.

    random_state: ``int``, optional, default: ``0``
        Random seed set for reproducing results.

    select_frac: ``float``, optional, default: ``0.1``
        Down sampling fraction on the cells.

    select_K: ``int``, optional, default: ``25``
        Number of neighbors to be used to estimate local density for each data point for down sampling.

    select_alpha: ``float``, optional, default: ``1.0``
        Weight the down sample to be proportional to ``radius ** select_alpha``.

    full_speed: ``bool``, optional, default: ``False``
        * If ``True``, use multiple threads in constructing ``hnsw`` index. However, the kNN results are not reproducible.
        * Otherwise, use only one thread to make sure results are reproducible.

    net_alpha: ``float``, optional, default: ``0.1``
        L2 penalty (regularization term) parameter of the deep regressor.

    polish_learning_frac: ``float``, optional, default: ``10.0``
        After running the deep regressor to predict new coordinates, use ``polish_learning_frac`` * ``n_obs`` as the learning rate to polish the coordinates.

    polish_n_iter: ``int``, optional, default: ``30``
        Number of iterations for polishing UMAP run.

    out_basis: ``str``, optional, default: ``"net_umap"``
        Key name for calculated UMAP coordinates to store.

    Returns
    -------
    ``None``

    Update ``data.obsm``:
        * ``data.obsm['X_' + out_basis]``: Net UMAP coordinates of the data.

    Update ``data.obs``:
        * ``data.obs['ds_selected']``: Boolean array to indicate which cells are selected during the down sampling phase.

    Examples
    --------
    >>> pg.net_umap(data)
    """

    rep = update_rep(rep)
    indices_key = rep + "_knn_indices"
    distances_key = rep + "_knn_distances"

    if not knn_is_cached(data, indices_key, distances_key, select_K):
        raise ValueError("Please run neighbors first!")

    n_jobs = effective_n_jobs(n_jobs)

    selected = select_cells(
        data.uns[distances_key],
        select_frac,
        K=select_K,
        alpha=select_alpha,
        random_state=random_state,
    )
    X_full = X_from_rep(data, rep)
    X = X_full[selected, :]

    ds_indices_key = "ds_" + rep + "_knn_indices"  # ds refers to down-sampling
    ds_distances_key = "ds_" + rep + "_knn_distances"
    indices, distances = calculate_nearest_neighbors(
        X,
        K=n_neighbors,
        n_jobs=n_jobs,
        random_state=random_state,
        full_speed=full_speed,
    )
    data.uns[ds_indices_key] = indices
    data.uns[ds_distances_key] = distances

    knn_indices = np.insert(data.uns[ds_indices_key][:, 0:n_neighbors - 1],
                            0,
                            range(X.shape[0]),
                            axis=1)
    knn_dists = np.insert(data.uns[ds_distances_key][:, 0:n_neighbors - 1],
                          0,
                          0.0,
                          axis=1)

    X_umap = calc_umap(
        X,
        n_components,
        n_neighbors,
        min_dist,
        spread,
        random_state,
        knn_indices=knn_indices,
        knn_dists=knn_dists,
    )

    data.uns["X_" + out_basis + "_small"] = X_umap
    data.obs["ds_selected"] = selected

    Y_init = np.zeros((data.shape[0], n_components), dtype=np.float64)
    Y_init[selected, :] = X_umap
    Y_init[~selected, :] = net_train_and_predict(X,
                                                 X_umap,
                                                 X_full[~selected, :],
                                                 net_alpha,
                                                 random_state,
                                                 verbose=True)

    data.obsm["X_" + out_basis + "_pred"] = Y_init

    knn_indices = np.insert(data.uns[indices_key][:, 0:n_neighbors - 1],
                            0,
                            range(data.shape[0]),
                            axis=1)
    knn_dists = np.insert(data.uns[distances_key][:, 0:n_neighbors - 1],
                          0,
                          0.0,
                          axis=1)

    data.obsm["X_" + out_basis] = calc_umap(
        X_full,
        n_components,
        n_neighbors,
        min_dist,
        spread,
        random_state,
        init=Y_init,
        n_epochs=polish_n_epochs,
        learning_rate=polish_learning_rate,
        knn_indices=knn_indices,
        knn_dists=knn_dists,
    )
def net_umap(
    data: MultimodalData,
    rep: str = "pca",
    n_jobs: int = -1,
    n_components: int = 2,
    n_neighbors: int = 15,
    min_dist: float = 0.5,
    spread: float = 1.0,
    densmap: bool = False,
    dens_lambda: float = 2.0,
    dens_frac: float = 0.3,
    dens_var_shift: float = 0.1,
    random_state: int = 0,
    select_frac: float = 0.1,
    select_K: int = 25,
    select_alpha: float = 1.0,
    full_speed: bool = False,
    net_alpha: float = 0.1,
    polish_learning_rate: float = 10.0,
    polish_n_epochs: int = 30,
    out_basis: str = "net_umap",
) -> None:
    """Calculate Net-UMAP embedding of cells.

    Net-UMAP is an approximated UMAP embedding using Deep Learning model to improve the speed.

    In specific, the deep model used is MLPRegressor_, the *scikit-learn* implementation of Multi-layer Perceptron regressor.

    See [Li20]_ for details.

    .. _MLPRegressor: https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPRegressor.html

    Parameters
    ----------
    data: ``pegasusio.MultimodalData``
        Annotated data matrix with rows for cells and columns for genes.

    rep: ``str``, optional, default: ``"pca"``
        Representation of data used for the calculation. By default, use PCA coordinates. If ``None``, use the count matrix ``data.X``.

    n_jobs: ``int``, optional, default: ``-1``
        Number of threads to use. If ``-1``, use all physical CPU cores.

    n_components: ``int``, optional, default: ``2``
        Dimension of calculated UMAP coordinates. By default, generate 2-dimensional data for 2D visualization.

    n_neighbors: ``int``, optional, default: ``15``
        Number of nearest neighbors considered during the computation.

    min_dist: ``float``, optional, default: ``0.5``
        The effective minimum distance between embedded data points.

    spread: ``float``, optional, default: ``1.0``
        The effective scale of embedded data points.

    densmap: ``bool``, optional, default: ``False``
        Whether the density-augmented objective of densMAP should be used for optimization, which will generate an embedding where
        local densities are encouraged to be correlated with those in the original space.

    dens_lambda: ``float``, optional, default: ``2.0``
        Controls the regularization weight of the density correlation term in densMAP. Only works when *densmap* is ``True``.
        Larger values prioritize density preservation over the UMAP objective, while values closer to 0 for the opposite direction.
        Notice that setting this parameter to ``0`` is equivalent to running the original UMAP algorithm.

    dens_frac: ``float``, optional, default: ``0.3``
        Controls the fraction of epochs (between 0 and 1) where the density-augmented objective is used in densMAP. Only works when
        *densmap* is ``True``.
        The first ``(1 - dens_frac)`` fraction of epochs optimize the original UMAP objective before introducing the density
        correlation term.

    dens_var_shift: ``float``, optional, default, ``0.1``
        A small constant added to the variance of local radii in the embedding when calculating the density correlation objective to
        prevent numerical instability from dividing by a small number. Only works when *densmap* is ``True``.

    random_state: ``int``, optional, default: ``0``
        Random seed set for reproducing results.

    select_frac: ``float``, optional, default: ``0.1``
        Down sampling fraction on the cells.

    select_K: ``int``, optional, default: ``25``
        Number of neighbors to be used to estimate local density for each data point for down sampling.

    select_alpha: ``float``, optional, default: ``1.0``
        Weight the down sample to be proportional to ``radius ** select_alpha``.

    full_speed: ``bool``, optional, default: ``False``
        * If ``True``, use multiple threads in constructing ``hnsw`` index. However, the kNN results are not reproducible.
        * Otherwise, use only one thread to make sure results are reproducible.

    net_alpha: ``float``, optional, default: ``0.1``
        L2 penalty (regularization term) parameter of the deep regressor.

    polish_learning_frac: ``float``, optional, default: ``10.0``
        After running the deep regressor to predict new coordinates, use ``polish_learning_frac`` * ``n_obs`` as the learning rate to polish the coordinates.

    polish_n_iter: ``int``, optional, default: ``30``
        Number of iterations for polishing UMAP run.

    out_basis: ``str``, optional, default: ``"net_umap"``
        Key name for calculated UMAP coordinates to store.

    Returns
    -------
    ``None``

    Update ``data.obsm``:
        * ``data.obsm['X_' + out_basis]``: Net UMAP coordinates of the data.

    Update ``data.obs``:
        * ``data.obs['ds_selected']``: Boolean array to indicate which cells are selected during the down sampling phase.

    Examples
    --------
    >>> pg.net_umap(data)
    """

    rep = update_rep(rep)
    n_jobs = eff_n_jobs(n_jobs)
    knn_indices, knn_dists = get_neighbors(data,
                                           K=select_K,
                                           rep=rep,
                                           n_jobs=n_jobs,
                                           random_state=random_state,
                                           full_speed=full_speed)

    selected = select_cells(
        knn_dists,
        select_frac,
        K=select_K,
        alpha=select_alpha,
        random_state=random_state,
    )
    X_full = X_from_rep(data, rep)
    X = X_full[selected, :]

    if data.shape[0] < n_neighbors:
        logger.warning(
            f"Warning: Number of samples = {data.shape[0]} < K = {n_neighbors}!\n Set K to {data.shape[0]}."
        )
        n_neighbors = data.shape[0]

    ds_indices_key = "ds_" + rep + "_knn_indices"  # ds refers to down-sampling
    ds_distances_key = "ds_" + rep + "_knn_distances"
    indices, distances = calculate_nearest_neighbors(
        X,
        K=n_neighbors,
        n_jobs=n_jobs,
        random_state=random_state,
        full_speed=full_speed,
    )
    data.uns[ds_indices_key] = indices
    data.uns[ds_distances_key] = distances

    knn_indices = np.insert(data.uns[ds_indices_key][:, 0:n_neighbors - 1],
                            0,
                            range(X.shape[0]),
                            axis=1)
    knn_dists = np.insert(data.uns[ds_distances_key][:, 0:n_neighbors - 1],
                          0,
                          0.0,
                          axis=1)

    X_umap = calc_umap(
        X,
        n_components=n_components,
        n_neighbors=n_neighbors,
        min_dist=min_dist,
        spread=spread,
        densmap=densmap,
        dens_lambda=dens_lambda,
        dens_frac=dens_frac,
        dens_var_shift=dens_var_shift,
        random_state=random_state,
        knn_indices=knn_indices,
        knn_dists=knn_dists,
    )

    data.uns["X_" + out_basis + "_small"] = X_umap
    data.obs["ds_selected"] = selected

    Y_init = np.zeros((data.shape[0], n_components), dtype=np.float64)
    Y_init[selected, :] = X_umap
    Y_init[~selected, :] = net_train_and_predict(X,
                                                 X_umap,
                                                 X_full[~selected, :],
                                                 net_alpha,
                                                 n_jobs,
                                                 random_state,
                                                 verbose=True)

    data.obsm["X_" + out_basis + "_pred"] = Y_init

    knn_indices, knn_dists = get_neighbors(data,
                                           K=n_neighbors,
                                           rep=rep,
                                           n_jobs=n_jobs,
                                           random_state=random_state,
                                           full_speed=full_speed)
    knn_indices = np.insert(knn_indices[:, 0:n_neighbors - 1],
                            0,
                            range(data.shape[0]),
                            axis=1)
    knn_dists = np.insert(knn_dists[:, 0:n_neighbors - 1], 0, 0.0, axis=1)

    key = f"X_{out_basis}"
    data.obsm[key] = calc_umap(
        X_full,
        n_components=n_components,
        n_neighbors=n_neighbors,
        min_dist=min_dist,
        spread=spread,
        densmap=densmap,
        dens_lambda=dens_lambda,
        dens_frac=dens_frac,
        dens_var_shift=dens_var_shift,
        random_state=random_state,
        init=Y_init,
        n_epochs=polish_n_epochs,
        learning_rate=polish_learning_rate,
        knn_indices=knn_indices,
        knn_dists=knn_dists,
    )
    data.register_attr(key, "basis")