def on_btnDisconnectivity_graph_clicked(self, clicked=None): """show the disconnectivity graph it is interactive, so that when you click on an end point that minima is selected """ if clicked is None: return if not hasattr(self, "dgraph_dlg"): self.dgraph_dlg = DGraphDialog(self.system.database, parent=self) self.dgraph_dlg.dgraph_widget.minimum_selected.connect( self.on_minimum_picked) self.dgraph_dlg.dgraph_widget.minimum_selected.connect( self.SelectMinimum) self.dgraph_dlg.rebuild_disconnectivity_graph() self.dgraph_dlg.show()
def on_btnDisconnectivity_graph_clicked(self, clicked=None): """show the disconnectivity graph it is interactive, so that when you click on an end point that minima is selected """ if clicked is None: return if not hasattr(self, "dgraph_dlg"): self.dgraph_dlg = DGraphDialog(self.system.database, parent=self) self.dgraph_dlg.dgraph_widget.minimum_selected.connect(self.on_minimum_picked) self.dgraph_dlg.dgraph_widget.minimum_selected.connect(self.SelectMinimum) self.dgraph_dlg.rebuild_disconnectivity_graph() self.dgraph_dlg.show()
class MainGUI(QtGui.QMainWindow): """ this is the main class for the pele gui Parameters ---------- app : the application object returned by QtGui.QApplication() systemtype : system class object the system class """ def __init__(self, app, systemtype, parent=None): QtGui.QWidget.__init__(self) self.ui = Ui_MainWindow() self.ui.setupUi(self) self.systemtype = systemtype self.transition = None self.app = app self.double_ended_connect_runs = [] self.pick_count = 0 self.minima_selection = MySelection() self.on_minimum_1_selected = Signal() self.on_minimum_2_selected = Signal() # set up the list manager self.list_manager = ListViewManager(self) # define the system self.NewSystem() # finish setting up the list manager (this must be done after NewSystem() is called) self.list_manager.finish_setup() # try to load the pymol viewer. try: self.usepymol = self.system.params.gui.use_pymol except (KeyError, AttributeError): self.usepymol = config.getboolean("gui", "use_pymol") if self.usepymol: try: from pymol_viewer import PymolViewer self.pymolviewer = PymolViewer(self.system.load_coords_pymol) except (ImportError or NotImplementedError): self.usepymol = False if self.usepymol == False: # note: glutInit() must be called exactly once. pymol calls it # during pymol.finish_launching(), so if we call it again it will # give an error. On the other hand, if we're not using pymol we # must call it. from OpenGL.GLUT import glutInit glutInit() self.bhmanager = None def NewSystem(self): """ this is called to initialize the system with a database """ self.system = self.systemtype() self.connect_db() def on_action_edit_params_triggered(self, checked=None): if checked is None: return self.paramsdlg = DlgParams(self.system.params) self.paramsdlg.show() def processEvents(self): self.app.processEvents() def on_action_db_connect_triggered(self, checked=None): """ launch a file browser to connect to an existing database """ if checked is None: return filename = QtGui.QFileDialog.getSaveFileName(self, "Select database", ".") if len(filename) > 0: self.connect_db(filename) def connect_db(self, database=":memory:"): """ connect to an existing database at location filename """ self.list_manager.clear() # note: database can be either Database, or string, or QString if isinstance(database, Database): self.system.database = database else: self.system.database = self.system.create_database(db=database) # add minima to listWidged. do sorting after all minima are added for minimum in self.system.database.minima(): self.NewMinimum(minimum, sort_items=False) self.list_manager._sort_minima() self.NewTS(self.system.database.transition_states(order_energy=True)) self.list_manager.resize_columns_minima() self.list_manager.resize_columns_ts() self.system.database.on_minimum_added.connect(self.NewMinimum) self.system.database.on_minimum_removed(self.RemoveMinimum) self.system.database.on_ts_added.connect(self.NewTS) self.system.database.on_ts_removed.connect(self.RemoveTS) def SelectMinimum(self, minimum, set_selected=True): """when you click on a minimum in the basinhopping tab """ # print "selecting minimum", minimum._id, minimum.energy if set_selected: self.list_manager._select_main(minimum) return self.ui.ogl_main.setSystem(self.system) self.ui.ogl_main.setCoords(minimum.coords) self.ui.ogl_main.setMinimum(minimum) self.ui.oglTS.setSystem(self.system) if self.usepymol: self.pymolviewer.update_coords([minimum.coords], index=1, delete_all=True) def _SelectMinimum1(self, minimum, set_selected=True): """set the first minimum displayed in the connect tab""" if set_selected: self.list_manager._select1(minimum) return print "selecting minimum 1:", minimum._id, minimum.energy self.ui.oglPath.setSystem(self.system) self.ui.oglPath.setCoords(minimum.coords, index=1) # self.ui.oglPath.setMinimum(minimum, index=1) self.minima_selection.minimum1 = minimum self.minima_selection.coords1 = minimum.coords self.neb = None if self.usepymol: self.pymolviewer.update_coords([minimum.coords], index=1) self.on_minimum_1_selected(minimum) def _SelectMinimum2(self, minimum, set_selected=True): """set the second minimum displayed in the connect tab""" if set_selected: self.list_manager._select2(minimum) return print "selecting minimum 2:", minimum._id, minimum.energy self.ui.oglPath.setSystem(self.system) self.ui.oglPath.setCoords(minimum.coords, index=2) # self.ui.oglPath.setMinimum(minimum, index=2) self.minima_selection.minimum2 = minimum self.minima_selection.coords2 = minimum.coords self.neb = None if self.usepymol: self.pymolviewer.update_coords([minimum.coords], index=2) self.on_minimum_2_selected(minimum) def get_selected_minima(self): """return the two minima that have been chosen in the gui""" m1, m2 = self.minima_selection.minimum1, self.minima_selection.minimum2 if m1 is None or m2 is None: raise Exception("you must select two minima first") return m1, m2 def get_selected_coords(self): """return the two sets of coordinates that have been chosen in the gui note, that these may not be the same as what is stored in the minimum. E.g. they may be the aligned structures """ coords1, coords2 = self.minima_selection.coords1, self.minima_selection.coords2 if coords1 is None or coords2 is None: raise Exception("you must select two minima first") return coords1, coords2 def show_TS(self, ts): """ show the transition state and the associated minima in the 3d viewer """ self.ui.oglTS.setSystem(self.system) m1 = ts.minimum1 m2 = ts.minimum2 # put them in best alignment mindist = self.system.get_mindist() dist, m1coords, tscoords = mindist(m1.coords, ts.coords) dist, m2coords, tscoords = mindist(m2.coords, ts.coords) self.tscoordspath = np.array([m1coords, tscoords, m2coords]) labels = ["minimum: energy " + str(m1.energy) + " id " + str(m1._id)] labels += ["ts: energy " + str(ts.energy)] labels += ["minimum: energy " + str(m2.energy) + " id " + str(m2._id)] self.ui.oglTS.setCoordsPath(self.tscoordspath, frame=1, labels=labels) if self.usepymol: self.pymolviewer.update_coords(self.tscoordspath, index=1, delete_all=True) def on_btnAlign_clicked(self, clicked=None): """use mindist to align the minima. called when the align button is pressed """ if clicked is None: return coords1, coords2 = self.get_selected_coords() align = self.system.get_mindist() pot = self.system.get_potential() print "energy before alignment", pot.getEnergy(coords1), pot.getEnergy(coords2) dist, coords1, coords2 = align(coords1, coords2) print "energy after alignment", pot.getEnergy(coords1), pot.getEnergy(coords2) print "best alignment distance", dist self.ui.oglPath.setCoords(coords1, index=1) self.ui.oglPath.setCoords(coords2, index=2) self.minima_selection.coords1 = coords1 self.minima_selection.coords2 = coords2 if self.usepymol: self.pymolviewer.update_coords([coords1], index=1) self.pymolviewer.update_coords([coords2], index=2) def on_btnNEB_clicked(self, clicked=None): """do an NEB run (not a connect run). Don't find best alignment first""" if clicked is None: return coords1, coords2 = self.get_selected_coords() from neb_explorer import NEBExplorer if not hasattr(self, "nebexplorer"): self.nebexplorer = NEBExplorer(system=self.system, app=self.app, parent=self) self.nebexplorer.show() self.nebexplorer.new_neb(coords1, coords2, run=False) # def showFrame(self, i): # if hasattr(self, "nebcoords"): # self.ui.oglPath.setCoords(self.nebcoords[i,:]) def on_minimum_picked(self, min1): """called when a minimimum is clicked on in the graph or disconnectivity graph""" if (self.pick_count % 2) == 0: self._SelectMinimum1(min1) else: self._SelectMinimum2(min1) self.pick_count += 1 def on_btnDisconnectivity_graph_clicked(self, clicked=None): """show the disconnectivity graph it is interactive, so that when you click on an end point that minima is selected """ if clicked is None: return if not hasattr(self, "dgraph_dlg"): self.dgraph_dlg = DGraphDialog(self.system.database, parent=self) self.dgraph_dlg.dgraph_widget.minimum_selected.connect(self.on_minimum_picked) self.dgraph_dlg.dgraph_widget.minimum_selected.connect(self.SelectMinimum) self.dgraph_dlg.rebuild_disconnectivity_graph() self.dgraph_dlg.show() def on_btnShowGraph_clicked(self, clicked=None): """ show the graph of minima and transition states make it interactive, so that when you click on a point that minima is selected """ if clicked is None: return self.pick_count = 0 if not hasattr(self, "graphview"): self.graphview = GraphViewDialog(self.system.database, parent=self, app=self.app) self.graphview.widget.on_minima_picked.connect(self.on_minimum_picked) self.graphview.widget.on_minima_picked.connect(self.SelectMinimum) self.graphview.show() self.graphview.widget.make_graph() try: m1, m2 = self.get_selected_minima() self.graphview.widget._show_minimum_energy_path(m1, m2) except: self.graphview.widget.show_graph() def on_pushNormalmodesMin_clicked(self, clicked=None): if clicked is None: return if not hasattr(self, "normalmode_explorer"): self.normalmode_explorer = NormalmodeBrowser(self, self.system, self.app) min1 = self.ui.ogl_main.minima[1] if min1 is None: raise RuntimeError("you must select a minimum first") self.normalmode_explorer.set_coords(min1.coords) self.normalmode_explorer.show() def on_pushNormalmodesTS_clicked(self, clicked=None): if clicked is None: return if not hasattr(self, "normalmode_explorer"): self.normalmode_explorer = NormalmodeBrowser(self, self.system, self.app) ts = self.list_manager.get_selected_ts() if ts is None: raise RuntimeError("you must select a transition state first") self.normalmode_explorer.set_coords(ts.coords) self.normalmode_explorer.show() def NewMinimum(self, minimum, sort_items=True): """ add a new minimum to the system """ self.list_manager.NewMinimum(minimum, sort_items=sort_items) def RemoveMinimum(self, minimum): """remove a minimum from self.minima_list_model""" self.list_manager.RemoveMinimum(minimum) def NewTS(self, ts, sort=True): """add new transition state, or list of transition states""" self.list_manager.NewTS(ts, sort=sort) def RemoveTS(self, ts): """remove transition state""" raise Exception("removing transition states not implemented yet") obj = self.ui.list_TS tsid = id(ts) itms = self.ui.list_TS.findItems("*", QtCore.Qt.MatchWildcard) for i in itms: if i.tsid == tsid: obj.takeItem(obj.row(i)) def set_basinhopping_number_alive(self, nalive): """set the label that shows how many basinhopping processes are alive""" self.ui.label_bh_nproc.setText("%d B.H. processes" % nalive) def on_btn_start_basinhopping_clicked(self, clicked=None): """this is run when the start basinhopping button is clicked""" if clicked is None: return # set up the basinhopping manager if not already done if self.bhmanager is None: self.bhmanager = BHManager( self.system, self.system.database, on_number_alive_changed=self.set_basinhopping_number_alive ) # get the number of steps from the input box nstepsstr = self.ui.lineEdit_bh_nsteps.text() nsteps = None try: nsteps = int(nstepsstr) except ValueError: # ignore the text if it is the default text if "steps" not in nstepsstr: sys.stderr.write("can't convert %s to integer\n" % nstepsstr) # start a basinhopping run self.bhmanager.start_worker(nsteps=nsteps) def on_btn_stop_basinhopping_clicked(self, clicked=None): if clicked is None: return self.bhmanager.kill_all_workers() def on_action_delete_minimum_triggered(self, checked=None): if checked is None: return min1 = self.ui.ogl_main.minima[1] ret = QtGui.QMessageBox.question( self, "Deleting minima", "Do you want to delete minima %d with energy %g" % (min1._id, min1.energy), QtGui.QMessageBox.Ok, QtGui.QMessageBox.Cancel, ) if ret == QtGui.QMessageBox.Ok: print "deleting minima" print "deleting minimum", min1._id, min1.energy self.RemoveMinimum(min1) self.system.database.removeMinimum(min1) def on_btnConnect_clicked(self, clicked=None): if clicked is None: return return self._doubleEndedConnect(reconnect=False) def on_btnReconnect_clicked(self, clicked=None): if clicked is None: return return self._doubleEndedConnect(reconnect=True) def _doubleEndedConnect(self, reconnect=False, min1min2=None): """ launch a double ended connect run to connect the two selected minima. If the minima are not connected, or reconnect is True, launch a connect browser in a separate window. Else just show the path in the OGL viewer """ # determine which minima to connect if min1min2 is None: min1, min2 = self.get_selected_minima() else: min1, min2 = min1min2 database = self.system.database if not reconnect: # check if the minima are already connected double_ended_connect = self.system.get_double_ended_connect( min1, min2, database, fresh_connect=False, verbosity=0 ) if double_ended_connect.graph.areConnected(min1, min2): print "minima are already connected. loading smoothed path in viewer" mints, S, energies = double_ended_connect.returnPath() clist = [m.coords for m in mints] smoothpath = self.system.smooth_path(clist) coords = np.array(smoothpath) self.nebcoords = coords self.nebenergies = np.array(energies) print "setting path in oglPath" self.ui.oglPath.setCoordsPath(coords) # , labels) # self.ui.oglPath.setCoords(coords[0,:], 1) # self.ui.oglPath.setCoords(None, 2) # self.ui.sliderFrame.setRange(0, coords.shape[0]-1) if self.usepymol: self.pymolviewer.update_coords(self.nebcoords, index=1, delete_all=True) return # make the connect viewer decviewer = ConnectViewer(self.system, self.system.database, min1, min2, parent=self, app=self.app) print "starting double ended" decviewer.show() decviewer.start() # store pointers self.double_ended_connect_runs.append(decviewer) def on_btn_connect_in_optim_clicked(self, clicked=None): """spawn an OPTIM job and retrieve the minima and transition states it finds""" if clicked is None: return min1, min2 = self.get_selected_minima() # existing_minima = set(self.system.database.minima()) spawner = self.system.get_optim_spawner(min1.coords, min2.coords) spawner.run() db = self.system.database newminima, newts = spawner.load_results(self.system.database) # for m in newminima: # if m not in existing_minima: # self.NewMinimum(m) # now use DoubleEndedConnect to test if they are connected graph = TSGraph(db) if graph.areConnected(min1, min2): # use double ended connect to draw the interpolated path # this is ugly self._doubleEndedConnect(reconnect=False, min1min2=(min1, min2)) def _merge_minima(self, min1, min2): mindist = self.system.get_mindist() dist, x1, x2 = mindist(min1.coords, min2.coords) query = "Do you want to merge minimum %d with energy %g" % (min1._id, min1.energy) query += " with minimum %d with energy %g" % (min2._id, min2.energy) query += " separated by distance %g" % (dist) ret = QtGui.QMessageBox.question(self, "Merging minima", query, QtGui.QMessageBox.Ok, QtGui.QMessageBox.Cancel) if ret == QtGui.QMessageBox.Ok: m1, m2 = min1, min2 if m1._id > m2._id: m1, m2 = m2, m1 print "merging minima", m1._id, m2._id # , ": minimum", m2._id, "will be deleted" self.system.database.mergeMinima(m1, m2) self.RemoveMinimum(m2) def on_action_merge_minima_triggered(self, checked=None): if checked is None: return min1, min2 = self.get_selected_minima() self._merge_minima(min1, min2) def on_action_compute_thermodynamic_info_triggered(self, checked=None): if checked is None: return def on_done(): print "done computing thermodynamic info" self._on_done = on_done # because on_finish stores a weak reference self.compute_thermodynamic_information(on_finish=self._on_done) # def launch_connect_explorer(self): # coords1, coords2 = self.get_selected_coords() # # if not hasattr(self, "local_connect_explorer"): # self.local_connect_explorer = ConnectExplorerDialog(self.system) # self.local_connect_explorer.nebwgt.process_events.connect(self.processEvents) # self.local_connect_explorer.show() # self.local_connect_explorer.createNEB(coords1, coords2) # self.local_connect_explorer.runNEB() def on_btn_close_all_clicked(self, checked=None): if checked is None: return print "closing all windows" for dv in self.double_ended_connect_runs: dv.hide() # del dv self.double_ended_connect_runs = [] try: self.local_connect_explorer.hide() del self.local_connect_explorer except AttributeError: pass try: self.dgraph_dlg.hide() del self.dgraph_dlg except AttributeError: pass try: self.nebexplorer.hide() del self.nebexplorer except AttributeError: pass try: self.rate_viewer.hide() del self.rate_viewer except AttributeError: pass def on_btn_connect_all_clicked(self, checked=None): if checked is None: return from pele.gui.connect_all import ConnectAllDialog # if hasattr(self, "connect_all"): # if not self.connect_all.isVisible(): # self.connect_all.show() # if not self.connect_all.is_running() self.connect_all = ConnectAllDialog(self.system, self.system.database, parent=self, app=self.app) self.connect_all.show() self.connect_all.start() def on_pushTakestepExplorer_clicked(self): if not hasattr(self, "takestep_explorer"): self.takestep_explorer = TakestepExplorer( parent=self, system=self.system, app=self.app, database=self.system.database ) self.takestep_explorer.show() def on_btn_heat_capacity_clicked(self, clicked=None): if clicked is None: return self.cv_viewer = HeatCapacityViewer(self.system, self.system.database, parent=self) self.cv_viewer.show() self.cv_viewer.rebuild_cv_plot() def compute_thermodynamic_information(self, on_finish=None): """compute thermodynamic information for minima and ts in the background call on_finish when the calculation is done """ # TODO: deal carefuly with what will happen if this is called again # before the first calculation is done. if self.thermo_worker is overwritten will # the first calculation stop? from pele.gui._cv_viewer import GetThermodynamicInfoParallelQT self.thermo_worker = GetThermodynamicInfoParallelQT(self.system, self.system.database, npar=1) if on_finish is not None: self.thermo_worker.on_finish.connect(on_finish) self.thermo_worker.start() njobs = self.thermo_worker.njobs print "calculating thermodynamics for", njobs, "minima and transition states" # def _compute_rates(self, min1, min2, T=1.): # """compute rates without first calculating thermodynamics # """ # print "computing rates at temperature T =", T # tslist = [ts for ts in self.system.database.transition_states() # if ts.fvib is not None] # rcalc = RateCalculation(tslist, [min1], [min2], T=T) # r12, r21 = rcalc.compute_rates() # print "rate from", min1._id, "to", min2._id, "=", r12 # print "rate from", min2._id, "to", min1._id, "=", r21 # # def compute_rates(self, min1, min2, T=1.): # """compute the transition rate from min1 to min2 and vice versa""" # def on_finish(): # print "thermodynamic calculation finished" # self._compute_rates(min1, min2) # self._on_finish_thermo_reference = on_finish # so it doeesn't get garbage collected # self.compute_thermodynamic_information(on_finish=on_finish) def on_btn_rates_clicked(self, clicked=None): if clicked is None: return if not hasattr(self, "rate_viewer"): m1, m2 = self.minima_selection.minimum1, self.minima_selection.minimum2 self.rate_viewer = RateViewer(self.system, self.system.database, parent=self) if m1 is not None: self.rate_viewer.update_A(m1) if m2 is not None: self.rate_viewer.update_B(m2) self.on_minimum_1_selected.connect(self.rate_viewer.update_A) self.on_minimum_2_selected.connect(self.rate_viewer.update_B) self.rate_viewer.show()
class MainGUI(QtGui.QMainWindow): """ this is the main class for the pele gui Parameters ---------- app : the application object returned by QtGui.QApplication() systemtype : system class object the system class """ def __init__(self, app, systemtype, parent=None): QtGui.QWidget.__init__(self) self.ui = Ui_MainWindow() self.ui.setupUi(self) self.systemtype = systemtype self.transition = None self.app = app self.double_ended_connect_runs = [] self.pick_count = 0 self.minima_selection = MySelection() self.on_minimum_1_selected = Signal() self.on_minimum_2_selected = Signal() # set up the list manager self.list_manager = ListViewManager(self) # define the system self.NewSystem() # finish setting up the list manager (this must be done after NewSystem() is called) self.list_manager.finish_setup() # try to load the pymol viewer. try: self.usepymol = self.system.params.gui.use_pymol except (KeyError, AttributeError): self.usepymol = config.getboolean("gui", "use_pymol") if self.usepymol: try: from .pymol_viewer import PymolViewer self.pymolviewer = PymolViewer(self.system.load_coords_pymol) except (ImportError or NotImplementedError): self.usepymol = False if not self.usepymol: # note: glutInit() must be called exactly once. pymol calls it # during pymol.finish_launching(), so if we call it again it will # give an error. On the other hand, if we're not using pymol we # must call it. from OpenGL.GLUT import glutInit glutInit() self.bhmanager = None def NewSystem(self): """ this is called to initialize the system with a database """ self.system = self.systemtype() self.connect_db() def on_action_edit_params_triggered(self, checked=None): if checked is None: return self.paramsdlg = DlgParams(self.system.params) self.paramsdlg.show() def processEvents(self): self.app.processEvents() def on_action_db_connect_triggered(self, checked=None): """ launch a file browser to connect to an existing database """ if checked is None: return filename = QtGui.QFileDialog.getSaveFileName(self, 'Select database', '.') if len(filename) > 0: self.connect_db(filename) def connect_db(self, database=":memory:"): """ connect to an existing database at location filename """ self.list_manager.clear() # note: database can be either Database, or string, or QString if isinstance(database, Database): self.system.database = database else: self.system.database = self.system.create_database(db=database) # add minima to listWidged. do sorting after all minima are added for minimum in self.system.database.minima(): self.NewMinimum(minimum, sort_items=False) self.list_manager._sort_minima() self.NewTS(self.system.database.transition_states(order_energy=True)) self.list_manager.resize_columns_minima() self.list_manager.resize_columns_ts() self.system.database.on_minimum_added.connect(self.NewMinimum) self.system.database.on_minimum_removed(self.RemoveMinimum) self.system.database.on_ts_added.connect(self.NewTS) self.system.database.on_ts_removed.connect(self.RemoveTS) def SelectMinimum(self, minimum, set_selected=True): """when you click on a minimum in the basinhopping tab """ # print "selecting minimum", minimum._id, minimum.energy if set_selected: self.list_manager._select_main(minimum) return self.ui.ogl_main.setSystem(self.system) self.ui.ogl_main.setCoords(minimum.coords) self.ui.ogl_main.setMinimum(minimum) self.ui.oglTS.setSystem(self.system) if self.usepymol: self.pymolviewer.update_coords([minimum.coords], index=1, delete_all=True) def _SelectMinimum1(self, minimum, set_selected=True): """set the first minimum displayed in the connect tab""" if set_selected: self.list_manager._select1(minimum) return print("selecting minimum 1:", minimum._id, minimum.energy) self.ui.oglPath.setSystem(self.system) self.ui.oglPath.setCoords(minimum.coords, index=1) # self.ui.oglPath.setMinimum(minimum, index=1) self.minima_selection.minimum1 = minimum self.minima_selection.coords1 = minimum.coords self.neb = None if self.usepymol: self.pymolviewer.update_coords([minimum.coords], index=1) self.on_minimum_1_selected(minimum) def _SelectMinimum2(self, minimum, set_selected=True): """set the second minimum displayed in the connect tab""" if set_selected: self.list_manager._select2(minimum) return print("selecting minimum 2:", minimum._id, minimum.energy) self.ui.oglPath.setSystem(self.system) self.ui.oglPath.setCoords(minimum.coords, index=2) # self.ui.oglPath.setMinimum(minimum, index=2) self.minima_selection.minimum2 = minimum self.minima_selection.coords2 = minimum.coords self.neb = None if self.usepymol: self.pymolviewer.update_coords([minimum.coords], index=2) self.on_minimum_2_selected(minimum) def get_selected_minima(self): """return the two minima that have been chosen in the gui""" m1, m2 = self.minima_selection.minimum1, self.minima_selection.minimum2 if m1 is None or m2 is None: raise Exception("you must select two minima first") return m1, m2 def get_selected_coords(self): """return the two sets of coordinates that have been chosen in the gui note, that these may not be the same as what is stored in the minimum. E.g. they may be the aligned structures """ coords1, coords2 = self.minima_selection.coords1, self.minima_selection.coords2 if coords1 is None or coords2 is None: raise Exception("you must select two minima first") return coords1, coords2 def show_TS(self, ts): """ show the transition state and the associated minima in the 3d viewer """ self.ui.oglTS.setSystem(self.system) m1 = ts.minimum1 m2 = ts.minimum2 # put them in best alignment mindist = self.system.get_mindist() dist, m1coords, tscoords = mindist(m1.coords, ts.coords) dist, m2coords, tscoords = mindist(m2.coords, ts.coords) self.tscoordspath = np.array([m1coords, tscoords, m2coords]) labels = ["minimum: energy " + str(m1.energy) + " id " + str(m1._id)] labels += ["ts: energy " + str(ts.energy)] labels += ["minimum: energy " + str(m2.energy) + " id " + str(m2._id)] self.ui.oglTS.setCoordsPath(self.tscoordspath, frame=1, labels=labels) if self.usepymol: self.pymolviewer.update_coords(self.tscoordspath, index=1, delete_all=True) def on_btnAlign_clicked(self, clicked=None): """use mindist to align the minima. called when the align button is pressed """ if clicked is None: return coords1, coords2 = self.get_selected_coords() align = self.system.get_mindist() pot = self.system.get_potential() print("energy before alignment", pot.getEnergy(coords1), pot.getEnergy(coords2)) dist, coords1, coords2 = align(coords1, coords2) print("energy after alignment", pot.getEnergy(coords1), pot.getEnergy(coords2)) print("best alignment distance", dist) self.ui.oglPath.setCoords(coords1, index=1) self.ui.oglPath.setCoords(coords2, index=2) self.minima_selection.coords1 = coords1 self.minima_selection.coords2 = coords2 if self.usepymol: self.pymolviewer.update_coords([coords1], index=1) self.pymolviewer.update_coords([coords2], index=2) def on_btnNEB_clicked(self, clicked=None): """do an NEB run (not a connect run). Don't find best alignment first""" if clicked is None: return coords1, coords2 = self.get_selected_coords() from .neb_explorer import NEBExplorer if not hasattr(self, "nebexplorer"): self.nebexplorer = NEBExplorer(system=self.system, app=self.app, parent=self) self.nebexplorer.show() self.nebexplorer.new_neb(coords1, coords2, run=False) # def showFrame(self, i): # if hasattr(self, "nebcoords"): # self.ui.oglPath.setCoords(self.nebcoords[i,:]) def on_minimum_picked(self, min1): """called when a minimimum is clicked on in the graph or disconnectivity graph""" if (self.pick_count % 2) == 0: self._SelectMinimum1(min1) else: self._SelectMinimum2(min1) self.pick_count += 1 def on_btnDisconnectivity_graph_clicked(self, clicked=None): """show the disconnectivity graph it is interactive, so that when you click on an end point that minima is selected """ if clicked is None: return if not hasattr(self, "dgraph_dlg"): self.dgraph_dlg = DGraphDialog(self.system.database, parent=self) self.dgraph_dlg.dgraph_widget.minimum_selected.connect( self.on_minimum_picked) self.dgraph_dlg.dgraph_widget.minimum_selected.connect( self.SelectMinimum) self.dgraph_dlg.rebuild_disconnectivity_graph() self.dgraph_dlg.show() def on_btnShowGraph_clicked(self, clicked=None): """ show the graph of minima and transition states make it interactive, so that when you click on a point that minima is selected """ if clicked is None: return self.pick_count = 0 if not hasattr(self, "graphview"): self.graphview = GraphViewDialog(self.system.database, parent=self, app=self.app) self.graphview.widget.on_minima_picked.connect( self.on_minimum_picked) self.graphview.widget.on_minima_picked.connect(self.SelectMinimum) self.graphview.show() self.graphview.widget.make_graph() try: m1, m2 = self.get_selected_minima() self.graphview.widget._show_minimum_energy_path(m1, m2) except Exception: self.graphview.widget.show_graph() def on_pushNormalmodesMin_clicked(self, clicked=None): if clicked is None: return if not hasattr(self, "normalmode_explorer"): self.normalmode_explorer = NormalmodeBrowser( self, self.system, self.app) min1 = self.ui.ogl_main.minima[1] if min1 is None: raise RuntimeError("you must select a minimum first") self.normalmode_explorer.set_coords(min1.coords) self.normalmode_explorer.show() def on_pushNormalmodesTS_clicked(self, clicked=None): if clicked is None: return if not hasattr(self, "normalmode_explorer"): self.normalmode_explorer = NormalmodeBrowser( self, self.system, self.app) ts = self.list_manager.get_selected_ts() if ts is None: raise RuntimeError("you must select a transition state first") self.normalmode_explorer.set_coords(ts.coords) self.normalmode_explorer.show() def NewMinimum(self, minimum, sort_items=True): """ add a new minimum to the system """ self.list_manager.NewMinimum(minimum, sort_items=sort_items) def RemoveMinimum(self, minimum): """remove a minimum from self.minima_list_model""" self.list_manager.RemoveMinimum(minimum) def NewTS(self, ts, sort=True): """add new transition state, or list of transition states""" self.list_manager.NewTS(ts, sort=sort) def RemoveTS(self, ts): """remove transition state""" raise Exception("removing transition states not implemented yet") obj = self.ui.list_TS tsid = id(ts) itms = self.ui.list_TS.findItems('*', QtCore.Qt.MatchWildcard) for i in itms: if i.tsid == tsid: obj.takeItem(obj.row(i)) def set_basinhopping_number_alive(self, nalive): """set the label that shows how many basinhopping processes are alive""" self.ui.label_bh_nproc.setText("%d B.H. processes" % nalive) def on_btn_start_basinhopping_clicked(self, clicked=None): """this is run when the start basinhopping button is clicked""" if clicked is None: return # set up the basinhopping manager if not already done if self.bhmanager is None: self.bhmanager = BHManager( self.system, self.system.database, on_number_alive_changed=self.set_basinhopping_number_alive) # get the number of steps from the input box nstepsstr = self.ui.lineEdit_bh_nsteps.text() nsteps = None try: nsteps = int(nstepsstr) except ValueError: # ignore the text if it is the default text if "steps" not in nstepsstr: sys.stderr.write("can't convert %s to integer\n" % nstepsstr) # start a basinhopping run self.bhmanager.start_worker(nsteps=nsteps) def on_btn_stop_basinhopping_clicked(self, clicked=None): if clicked is None: return self.bhmanager.kill_all_workers() def on_action_delete_minimum_triggered(self, checked=None): if checked is None: return min1 = self.ui.ogl_main.minima[1] ret = QtGui.QMessageBox.question( self, "Deleting minima", "Do you want to delete minima %d with energy %g" % (min1._id, min1.energy), QtGui.QMessageBox.Ok, QtGui.QMessageBox.Cancel) if ret == QtGui.QMessageBox.Ok: print("deleting minima") print("deleting minimum", min1._id, min1.energy) self.RemoveMinimum(min1) self.system.database.removeMinimum(min1) def on_btnConnect_clicked(self, clicked=None): if clicked is None: return return self._doubleEndedConnect(reconnect=False) def on_btnReconnect_clicked(self, clicked=None): if clicked is None: return return self._doubleEndedConnect(reconnect=True) def _doubleEndedConnect(self, reconnect=False, min1min2=None): """ launch a double ended connect run to connect the two selected minima. If the minima are not connected, or reconnect is True, launch a connect browser in a separate window. Else just show the path in the OGL viewer """ # determine which minima to connect if min1min2 is None: min1, min2 = self.get_selected_minima() else: min1, min2 = min1min2 database = self.system.database if not reconnect: # check if the minima are already connected double_ended_connect = self.system.get_double_ended_connect( min1, min2, database, fresh_connect=False, verbosity=0) if double_ended_connect.graph.areConnected(min1, min2): print( "minima are already connected. loading smoothed path in viewer" ) mints, S, energies = double_ended_connect.returnPath() clist = [m.coords for m in mints] smoothpath = self.system.smooth_path(clist) coords = np.array(smoothpath) self.nebcoords = coords self.nebenergies = np.array(energies) print("setting path in oglPath") self.ui.oglPath.setCoordsPath(coords) # self.ui.oglPath.setCoords(coords[0,:], 1) # self.ui.oglPath.setCoords(None, 2) # self.ui.sliderFrame.setRange(0, coords.shape[0]-1) if self.usepymol: self.pymolviewer.update_coords(self.nebcoords, index=1, delete_all=True) return # make the connect viewer decviewer = ConnectViewer(self.system, self.system.database, min1, min2, parent=self, app=self.app) print("starting double ended") decviewer.show() decviewer.start() # store pointers self.double_ended_connect_runs.append(decviewer) def on_btn_connect_in_optim_clicked(self, clicked=None): """spawn an OPTIM job and retrieve the minima and transition states it finds""" if clicked is None: return min1, min2 = self.get_selected_minima() # existing_minima = set(self.system.database.minima()) spawner = self.system.get_optim_spawner(min1.coords, min2.coords) spawner.run() db = self.system.database newminima, newts = spawner.load_results(self.system.database) # for m in newminima: # if m not in existing_minima: # self.NewMinimum(m) # now use DoubleEndedConnect to test if they are connected graph = TSGraph(db) if graph.areConnected(min1, min2): # use double ended connect to draw the interpolated path # this is ugly self._doubleEndedConnect(reconnect=False, min1min2=(min1, min2)) def _merge_minima(self, min1, min2): mindist = self.system.get_mindist() dist, x1, x2 = mindist(min1.coords, min2.coords) query = "Do you want to merge minimum %d with energy %g" % ( min1._id, min1.energy) query += " with minimum %d with energy %g" % ( min2._id, min2.energy) query += " separated by distance %g" % dist ret = QtGui.QMessageBox.question(self, "Merging minima", query, QtGui.QMessageBox.Ok, QtGui.QMessageBox.Cancel) if ret == QtGui.QMessageBox.Ok: m1, m2 = min1, min2 if m1._id > m2._id: m1, m2 = m2, m1 print("merging minima", m1._id, m2._id) self.system.database.mergeMinima(m1, m2) self.RemoveMinimum(m2) def on_action_merge_minima_triggered(self, checked=None): if checked is None: return min1, min2 = self.get_selected_minima() self._merge_minima(min1, min2) def on_action_compute_thermodynamic_info_triggered(self, checked=None): if checked is None: return def on_done(): print("done computing thermodynamic info") self._on_done = on_done # because on_finish stores a weak reference self.compute_thermodynamic_information(on_finish=self._on_done) def on_btn_close_all_clicked(self, checked=None): if checked is None: return print("closing all windows") for dv in self.double_ended_connect_runs: dv.hide() # del dv self.double_ended_connect_runs = [] try: self.local_connect_explorer.hide() del self.local_connect_explorer except AttributeError: pass try: self.dgraph_dlg.hide() del self.dgraph_dlg except AttributeError: pass try: self.nebexplorer.hide() del self.nebexplorer except AttributeError: pass try: self.rate_viewer.hide() del self.rate_viewer except AttributeError: pass def on_btn_connect_all_clicked(self, checked=None): if checked is None: return from pele.gui.connect_all import ConnectAllDialog # if hasattr(self, "connect_all"): # if not self.connect_all.isVisible(): # self.connect_all.show() # if not self.connect_all.is_running() self.connect_all = ConnectAllDialog(self.system, self.system.database, parent=self, app=self.app) self.connect_all.show() self.connect_all.start() def on_pushTakestepExplorer_clicked(self): if not hasattr(self, "takestep_explorer"): self.takestep_explorer = TakestepExplorer( parent=self, system=self.system, app=self.app, database=self.system.database) self.takestep_explorer.show() def on_btn_heat_capacity_clicked(self, clicked=None): if clicked is None: return self.cv_viewer = HeatCapacityViewer(self.system, self.system.database, parent=self) self.cv_viewer.show() self.cv_viewer.rebuild_cv_plot() def compute_thermodynamic_information(self, on_finish=None): """compute thermodynamic information for minima and ts in the background call on_finish when the calculation is done """ # TODO: deal carefuly with what will happen if this is called again # before the first calculation is done. if self.thermo_worker is overwritten will # the first calculation stop? from pele.gui._cv_viewer import GetThermodynamicInfoParallelQT self.thermo_worker = GetThermodynamicInfoParallelQT( self.system, self.system.database, npar=1) if on_finish is not None: self.thermo_worker.on_finish.connect(on_finish) self.thermo_worker.start() njobs = self.thermo_worker.njobs print("calculating thermodynamics for", njobs, "minima and transition states") # def _compute_rates(self, min1, min2, T=1.): # """compute rates without first calculating thermodynamics # """ # print "computing rates at temperature T =", T # tslist = [ts for ts in self.system.database.transition_states() # if ts.fvib is not None] # rcalc = RateCalculation(tslist, [min1], [min2], T=T) # r12, r21 = rcalc.compute_rates() # print "rate from", min1._id, "to", min2._id, "=", r12 # print "rate from", min2._id, "to", min1._id, "=", r21 # # def compute_rates(self, min1, min2, T=1.): # """compute the transition rate from min1 to min2 and vice versa""" # def on_finish(): # print "thermodynamic calculation finished" # self._compute_rates(min1, min2) # self._on_finish_thermo_reference = on_finish # so it doeesn't get garbage collected # self.compute_thermodynamic_information(on_finish=on_finish) def on_btn_rates_clicked(self, clicked=None): if clicked is None: return if not hasattr(self, "rate_viewer"): m1, m2 = self.minima_selection.minimum1, self.minima_selection.minimum2 self.rate_viewer = RateViewer(self.system, self.system.database, parent=self) if m1 is not None: self.rate_viewer.update_A(m1) if m2 is not None: self.rate_viewer.update_B(m2) self.on_minimum_1_selected.connect(self.rate_viewer.update_A) self.on_minimum_2_selected.connect(self.rate_viewer.update_B) self.rate_viewer.show()
def main(): if len(sys.argv) < 2: usage() exit(1) # The default is to use the largest connected component of the graph, # rather than the component which includes the global minimum. kwargs = {"include_gmin":False, "center_gmin":False} outfile, colourfile, groupcolourfile, idfile = None, None, None, None aspect = 6.0/7.0 width = 6 OPTIM = False opts, args = getopt.gnu_getopt(sys.argv[1:], "ho:", ["help", "nlevels=", "subgraph_size=", "OPTIM", "order_by_basin_size", "order_by_energy", "include_gmin", "center_gmin", "Emax=", "colourfile=", "groupcolourfile=", "idfile=", "shape=", "width=" ]) for o, a in opts: if o == "-h" or o == "--help": usage() exit(1) if o == "-o": outfile = a elif o == "--nlevels": kwargs["nlevels"] = int(a) elif o == "--Emax": kwargs["Emax"] = float(a) elif o == "--subgraph_size": kwargs["subgraph_size"] = int(a) elif o == "--order_by_basin_size": kwargs["order_by_basin_size"] = True elif o == "--order_by_energy": kwargs["order_by_energy"] = True elif o == "--include_gmin": kwargs["include_gmin"] = True elif o == "--center_gmin": kwargs["center_gmin"] = True elif o == "--OPTIM": OPTIM = True elif o == "--colourfile": colourfile = a print "Setting colourfile to ", colourfile elif o == "--groupcolourfile": if colourfile: raise AttributeError("Can't specify both colourfile and groupcolourfile") groupcolourfile = a elif o == '--idfile': idfile = a elif o == '--shape': aspect = float(a) elif o == '--width': width = float(a) else: print "don't understand", o, a print "" usage() exit(1) groups = None if OPTIM: #make database from min.data ts.data db = Database() converter = OptimDBConverter(db) converter.convert_no_coords() groups = read_AB(db) else: if len(args) == 0: print "you must specify database file" print "" usage() exit() dbfile = args[0] if not os.path.exists(dbfile): print "database file doesn't exist", dbfile exit() db = Database(dbfile) if outfile is None and use_gui: app = QApplication(sys.argv) kwargs["show_minima"] = False md = DGraphDialog(db, params=kwargs) md.rebuild_disconnectivity_graph() if groups is not None: md.dgraph_widget.dg.color_by_group(groups) md.dgraph_widget.redraw_disconnectivity_graph() md.show() sys.exit(app.exec_()) # make graph from database t0 = time.time() if "Emax" in kwargs and use_gui: graph = reduced_db2graph(db, kwargs['Emax']) else: graph = dg.database2graph(db) t1 = time.time() print "loading the data into a transition state graph took", t1-t0, "seconds" # do the disconnectivity graph analysis mydg = dg.DisconnectivityGraph(graph, **kwargs) print "doing disconnectivity graph analysis" sys.stdout.flush() t1 = time.time() mydg.calculate() t2 = time.time() print "d-graph analysis finished in", t2-t1, "seconds" print "number of minima:", mydg.tree_graph.number_of_leaves() print "plotting disconnectivity graph" sys.stdout.flush() if colourfile: print "Colouring tree according to file ", colourfile colourfetcher = get_colours_from_file(db, colourfile) colouredtree = dg.ColorDGraphByValue(mydg.tree_graph,colourfetcher,normalize_values=True) print "tree set up" colouredtree.run() print "Finished colouring" elif groupcolourfile: print "Colouring tree according to file ", colourfile grouplists = get_group_lists(groupcolourfile) colouredtree = dg.ColorDGraphByGroups(mydg.tree_graph,grouplists) colouredtree.run() print "Finished colouring" if idfile: labelminima = [] labels = {} fin = open(idfile,'r') for line in fin: minID = line.split()[0] labelminima.append(db.getMinimum(minID)) # labels[labelminima[-1]]=str(labelminim fin.close() print "Labelling ", len(labelminima), "minima" print "Creating axes with dimensions ", width, width/aspect fig = plt.figure(figsize=(width, width/aspect)) fig.set_facecolor('white') ax = fig.add_subplot(111, adjustable='box') # make the figure and save it mydg.plot(axes=ax) if idfile: print "Going into draw_minima" mydg.draw_minima(labelminima,labels=True) if outfile is None: plt.show() else: plt.savefig(outfile) t3 = time.time() print "plotting finished in", t3-t2, "seconds"
def main(): if len(sys.argv) < 2: usage() exit(1) kwargs = {} outfile = None OPTIM = False opts, args = getopt.gnu_getopt(sys.argv[1:], "ho:", ["help", "nlevels=", "subgraph_size=", "OPTIM", "order_by_basin_size", "order_by_energy", "include_gmin", "center_gmin", "Emax=", ]) for o, a in opts: if o == "-h" or o == "--help": usage() exit(1) if o == "-o": outfile = a elif o == "--nlevels": kwargs["nlevels"] = int(a) elif o == "--Emax": kwargs["Emax"] = float(a) elif o == "--subgraph_size": kwargs["subgraph_size"] = int(a) elif o == "--order_by_basin_size": kwargs["order_by_basin_size"] = True elif o == "--order_by_energy": kwargs["order_by_energy"] = True elif o == "--includer_gmin": kwargs["includer_gmin"] = True elif o == "--center_gmin": kwargs["center_gmin"] = True elif o == "--OPTIM": OPTIM = True else: print "don't understand", o, a print "" usage() exit(1) groups = None if OPTIM: #make database from min.data ts.data db = Database() converter = OptimDBConverter(db) converter.convert_no_coords() groups = read_AB(db) else: if len(args) == 0: print "you must specify database file" print "" usage() exit() dbfile = args[0] if not os.path.exists(dbfile): print "database file doesn't exist", dbfile exit() db = Database(dbfile) if outfile is None and use_gui: app = QApplication(sys.argv) kwargs["show_minima"] = False md = DGraphDialog(db, params=kwargs) md.rebuild_disconnectivity_graph() if groups is not None: md.dgraph_widget.dg.color_by_group(groups) md.dgraph_widget.redraw_disconnectivity_graph() md.show() sys.exit(app.exec_()) # make graph from database t0 = time.time() if "Emax" in kwargs and use_gui: graph = reduced_db2graph(db, kwargs['Emax']) else: graph = dg.database2graph(db) t1 = time.time() print "loading the data into a transition state graph took", t1-t0, "seconds" # do the disconnectivity graph analysis mydg = dg.DisconnectivityGraph(graph, **kwargs) print "doing disconnectivity graph analysis" sys.stdout.flush() t1 = time.time() mydg.calculate() t2 = time.time() print "d-graph analysis finished in", t2-t1, "seconds" print "number of minima:", mydg.tree_graph.number_of_leaves() print "plotting disconnectivigy graph" sys.stdout.flush() # make the figure and save it mydg.plot() if outfile is None: plt.show() else: plt.savefig(outfile) t3 = time.time() print "plotting finished in", t3-t2, "seconds"