Пример #1
0
def constants():
    from pencil.files import pdim
    npar = pdim.read_pdim().npar
    # Get grid dimensions
    from pencil.files import dim
    nx = dim.read_dim().nx
    ny = dim.read_dim().ny
    nz = dim.read_dim().nz

    # Get parameters:
    par = pc.read_param(datadir=datadir)
    cs0 = par.cs0
    pd = par.dustdensity_powerlaw
    pg = par.density_power_law
    eps0 = par.eps_dtog

    # Box size:
    from pencil.files import grid
    Lx = grid.read_grid().Lx
    Ly = grid.read_grid().Ly
    Lz = grid.read_grid().Lz

    r_int = round(np.amin(grid.read_grid().x), 1)
    r_ext = round(np.amax(grid.read_grid().x), 1)

    fname = 'constants'
    fsave = np.savez_compressed(os.path.join(path_dir,fname), npar=npar,
                                nx=nx, ny=ny, nz=nz, cs0=cs0, pd=pd, pg=pg, eps0=eps0,
                                Lx = Lx, Ly = Ly, Lz = Lz, r_int = r_int, r_ext = r_ext)
    xyzname = 'xyz'
    fsave = np.savez_compressed(os.path.join(path_dir, xyzname), r=ff.x, phi=ff.y, z=ff.z)
Пример #2
0
def read_power(file):
    """ 
    29-apr-2009/dintrans: coded
    t,dat=read_power(name_power_file)
    Read a power spectra file like 'data/poweru.dat'
    """ 
    infile = open(file, 'r')
    lines = infile.readlines()
    infile.close()
#
#  find the number of blocks (t,power) that should be read
#
    dim=read_dim()
    nblock=len(lines)/(dim.nxgrid/2/8+1)
#
    infile = open(file, 'r')
    t=N.zeros(1, dtype='Float32')
    data=N.zeros(1, dtype='Float32')
    for i in range(nblock):
        st=infile.readline()
        t=N.append(t, float(st))
        for ii in range(dim.nxgrid/2/8):
            st=infile.readline()
            data=N.append(data, N.asarray(st.split()).astype('f'))
    infile.close()

    t=t[1:] ; data=data[1:]
    nt=len(t) ; nk=len(data)/nt
    data=data.reshape(nt, nk)
    return t, data
def xder_6th(f,dx,x=[],y=[],z=[],param=[],dim=[]):

    if (f.ndim != 3 and f.ndim != 4):
        print("%s dimension arrays not handled." % (str(f.ndim)))
        raise ValueError

    if not param:
        param=read_param(quiet=True)
    if not dim:
        dim=read_dim()
    if len(x) < 1:
        gd  = read_grid(quiet=True)
        x = gd.x
    dx=N.gradient(x)
    if (dim.nx!=1):
        dx2 = 1./(60.*dx)
    dfdx = N.zeros_like(f)
    l1 = 3
    l2 = f.shape[-1]-3
    if (l2 > l1 and dim.nx!=1):
        for l in range(l1,l2):
            dfdx[...,l] = dx2[l]*( +45.*(f[...,l+1]-f[...,l-1])
                                    -9.*(f[...,l+2]-f[...,l-2])
                                    +   (f[...,l+3]-f[...,l-3]) )
    else:
        dfdx = 0.
    return dfdx
def xder2_6th(f,dx,x=[],y=[],z=[],param=[],dim=[]):

    if (f.ndim != 3 and f.ndim != 4):
        print("%s dimension arrays not handled." % (str(f.ndim)))
        raise ValueError

    if not param:
        param=read_param(quiet=True)
    if not dim: 
        dim=read_dim()

    dx = N.gradient(x)
    if (dim.nx!=1):
        dx2 = 1./(180.*dx**2.)
    dfdx = N.zeros_like(f)
    l1 = 3
    l2 = f.shape[-1]-3

    if (l2 > l1 and dim.nx!=1):
        for l in range(l1,l2): 
            dfdx[...,l] = dx2[l]*(-490.* f[...,l]
                                  +270.*(f[...,l-1]+f[...,l+1])
                                  - 27.*(f[...,l-2]+f[...,l+2])
                                  +  2.*(f[...,l-3]+f[...,l+3]) )
    else:
        dfdx = 0.

    return dfdx
Пример #5
0
def read_rmv_par(datadir='data/', dims=[], pdims=[], read_parameters = True):
    """ 
    Read both rmv_ipar.dat and rmv_par.dat to gain information about
    particles removed in the simulation. 

    Keyword arguments:
    
      *datadir*
        Directory containing simulation results

      *dims*
        Object from read_dim()
        
      *pdims* 
        Object from read_pdim()
       
      *read_parameters*: [ True | False ]
        Specify whether dims and pdims should be read or not
    """

    # Read parameter files if specified 
    if(read_parameters):
        dims = read_dim()
        pdims = read_pdim()

    # Read files and return object
    return fetch_particle_data(datadir, dims, pdims)
def xder_6th(f, dx, x=[], y=[], z=[], param=[], dim=[]):

    if (f.ndim != 3 and f.ndim != 4):
        print("%s dimension arrays not handled." % (str(f.ndim)))
        raise ValueError

    if not param:
        param = read_param(quiet=True)
    if not dim:
        dim = read_dim()
    if len(x) < 1:
        gd = read_grid(quiet=True)
        x = gd.x
    dx = N.gradient(x)
    if (dim.nx != 1):
        dx2 = 1. / (60. * dx)
    dfdx = N.zeros_like(f)
    l1 = 3
    l2 = f.shape[-1] - 3
    if (l2 > l1 and dim.nx != 1):
        for l in range(l1, l2):
            dfdx[...,
                 l] = dx2[l] * (+45. * (f[..., l + 1] - f[..., l - 1]) - 9. *
                                (f[..., l + 2] - f[..., l - 2]) +
                                (f[..., l + 3] - f[..., l - 3]))
    else:
        dfdx = 0.
    return dfdx
Пример #7
0
def read_power(file, datadir='data/'):
    """ 
    29-apr-2009/dintrans: coded
    t,dat=read_power(name_power_file)
    Read a power spectra file like 'data/poweru.dat'
    """ 
    filename = path.join(datadir, file)
    infile = open(filename, 'r')
    lines = infile.readlines()
    infile.close()
#
#  find the number of blocks (t,power) that should be read
#
    dim=read_dim(datadir=datadir)
    nblock=int(len(lines)/int(N.ceil(dim.nxgrid/2/8.)+1))
#
    with open(filename, 'r') as infile:
        t=N.zeros(1, dtype='Float32')
        data=N.zeros(1, dtype='Float32')
        for i in range(nblock):
            st=infile.readline()
            t=N.append(t, float(st))
            for ii in range(int(N.ceil(dim.nxgrid/2/8.))):
                st=infile.readline()
                data=N.append(data, N.asarray(st.split()).astype('f'))

    t=t[1:] ; data=data[1:]
    nt=len(t) ; nk=int(len(data)/nt)
    data=data.reshape(nt, nk)
    return t, data
Пример #8
0
def read_power(file):
    """ 
    29-apr-2009/dintrans: coded
    t,dat=read_power(name_power_file)
    Read a power spectra file like 'data/poweru.dat'
    """
    infile = open(file, 'r')
    lines = infile.readlines()
    infile.close()
    #
    #  find the number of blocks (t,power) that should be read
    #
    dim = read_dim()
    nblock = len(lines) / (dim.nxgrid / 2 / 8 + 1)
    #
    infile = open(file, 'r')
    t = N.zeros(1, dtype='Float32')
    data = N.zeros(1, dtype='Float32')
    for i in range(nblock):
        st = infile.readline()
        t = N.append(t, float(st))
        for ii in range(dim.nxgrid / 2 / 8):
            st = infile.readline()
            data = N.append(data, N.asarray(st.split()).astype('f'))
    infile.close()

    t = t[1:]
    data = data[1:]
    nt = len(t)
    nk = len(data) / nt
    data = data.reshape(nt, nk)
    return t, data
Пример #9
0
def yder_6th(f, dy, x=[], y=[], z=[], param=[], dim=[]):

    if (f.ndim != 3 and f.ndim != 4):
        print("%s dimension arrays not handled." % (str(f.ndim)))
        raise ValueError

    if not param:
        param = read_param(quiet=True)
    if not dim:
        dim = read_dim()

    dy = N.gradient(y)
    if (dim.ny != 1):
        dy2 = 1. / (60. * dy)
    dfdy = N.zeros_like(f)
    m1 = 3
    m2 = f.shape[-2] - 3

    if (m2 > m1 and dim.ny != 1):
        for m in range(m1, m2):
            dfdy[...,
                 m, :] = dy2[m] * (+45. *
                                   (f[..., m + 1, :] - f[..., m - 1, :]) - 9. *
                                   (f[..., m + 2, :] - f[..., m - 2, :]) +
                                   (f[..., m + 3, :] - f[..., m - 3, :]))
    else:
        dfdy = 0.
    if param.coord_system == ('cylindric' or 'spherical'):
        if len(x) < 1:
            gd = read_grid(quiet=True)
            x = gd.x
        dfdy /= x

    return dfdy
Пример #10
0
def read_rmv_par(datadir='data/', dims=[], pdims=[], read_parameters=True):
    """ 
    Read both rmv_ipar.dat and rmv_par.dat to gain information about
    particles removed in the simulation. 

    Keyword arguments:
    
      *datadir*
        Directory containing simulation results

      *dims*
        Object from read_dim()
        
      *pdims* 
        Object from read_pdim()
       
      *read_parameters*: [ True | False ]
        Specify whether dims and pdims should be read or not
    """

    # Read parameter files if specified
    if (read_parameters):
        dims = read_dim()
        pdims = read_pdim()

    # Read files and return object
    return fetch_particle_data(datadir, dims, pdims)
Пример #11
0
def div(f,dx,dy,dz,x=[],y=[],z=[],param=[],dim=[]):
    """
    take divergence of pencil code vector array
    """
    if (f.ndim != 4):
        print("div: must have vector 4-D array f[mvar,mz,my,mx] for divergence")
        raise ValueError
    if not param:
        param = read_param(quiet=True)
    if not dim:
        dim = read_dim()
    gd  = read_grid(quiet=True, param=param)
    if len(x) < 1:
        x = gd.x
        y = gd.y
        z = gd.z

    div = xder(f[0,...],dx,x=x,y=y,z=z,param=param,dim=dim) +\
          yder(f[1,...],dy,x=x,y=y,z=z,param=param,dim=dim) +\
          zder(f[2,...],dz,x=x,y=y,z=z,param=param,dim=dim)

    if param.coord_system == 'cylindric':
        div += f[0,...]/x
    if param.coord_system == 'spherical':
        sin_y = N.sin(y)
        cos_y = N.cos(y)
        i_sin = N.where(N.abs(sin_y) < 1e-5)[0]
        if i_sin.size > 0:
            cos_y[i_sin] = 0.; sin_y[i_sin] = 1
        x_1, cotth = N.meshgrid(1./gd.x, cos_y/sin_y)
        div += 2*f[0,...]*x_1 + f[1,...]*x_1*cotth
   
    return div
Пример #12
0
def read_power(file):
    """ 
    29-apr-2009/dintrans: coded
    t,dat=read_power(name_power_file)
    Read a power spectra file like 'data/poweru.dat'
    """ 
    infile = open(file, 'r')
    lines = infile.readlines()
    infile.close()
#
#  find the number of blocks (t,power) that should be read
#
    dim=read_dim()
    #nblock=len(lines)/int(N.ceil(dim.nxgrid/2/8.)+1) # Python 2 integer division
    nblock=int(len(lines)/int(N.ceil(int(dim.nxgrid/2)/8.)+1))
#
    infile = open(file, 'r')
    t=N.zeros(1, dtype='Float32')
    data=N.zeros(1, dtype='Float32')
    for i in range(nblock):
        st=infile.readline()
        t=N.append(t, float(st))
        #for ii in range(int(N.ceil(dim.nxgrid/2/8.))): # Python 2 integer division
        for ii in range(int(N.ceil(int(dim.nxgrid/2)/8.))):
            st=infile.readline()
            data=N.append(data, N.asarray(st.split()).astype('f'))
    infile.close()

    t=t[1:] ; data=data[1:]
    #nt=len(t) ; nk=len(data)/nt # Python 2 integer division
    nt=len(t) ; nk=int(len(data)/nt)
    data=data.reshape(nt, nk)
    return t, data
Пример #13
0
def laplacian(f,dx,dy,dz,x=[],y=[],z=[],param=[],dim=[]):
    """
    take the laplacian of a pencil code scalar array
    """
    if not param:
        param = read_param(quiet=True)
    if not dim:
        dim = read_dim()
    if len(x) < 1:
        gd  = read_grid(quiet=True)
        x = gd.x
        y = gd.y
        z = gd.z

    laplacian = N.empty(f.shape)
    laplacian = xder2(f,dx,x=x,y=y,z=z,param=param,dim=dim) +\
                yder2(f,dy,x=x,y=y,z=z,param=param,dim=dim) +\
                zder2(f,dz,x=x,y=y,z=z,param=param,dim=dim)

    if param.coord_system == 'cylindric':
        laplacian += xder(f,dx,x=x,y=y,z=z,param=param,dim=dim)/x
    if param.coord_system == 'spherical':
        sin_y = N.sin(y)
        cos_y = N.cos(y)
        i_sin = N.where(N.abs(sin_y) < 1e-5)[0]
        if i_sin.size > 0:
            cos_y[i_sin] = 0.; sin_y[i_sin] = 1
        x_2, cotth = N.meshgrid(1./x**2, cos_y/sin_y)
        laplacian += 2*xder(f,dx,x=x,y=y,z=z,param=param,dim=dim)/x +\
                       yder(f,dy,x=x,y=y,z=z,param=param,dim=dim)*x_2*cotth

    return laplacian
def xder2_6th(f, dx, x=[], y=[], z=[], param=[], dim=[]):

    if (f.ndim != 3 and f.ndim != 4):
        print("%s dimension arrays not handled." % (str(f.ndim)))
        raise ValueError

    if not param:
        param = read_param(quiet=True)
    if not dim:
        dim = read_dim()

    dx = N.gradient(x)
    if (dim.nx != 1):
        dx2 = 1. / (180. * dx**2.)
    dfdx = N.zeros_like(f)
    l1 = 3
    l2 = f.shape[-1] - 3

    if (l2 > l1 and dim.nx != 1):
        for l in range(l1, l2):
            dfdx[..., l] = dx2[l] * (-490. * f[..., l] + 270. *
                                     (f[..., l - 1] + f[..., l + 1]) - 27. *
                                     (f[..., l - 2] + f[..., l + 2]) + 2. *
                                     (f[..., l - 3] + f[..., l + 3]))
    else:
        dfdx = 0.

    return dfdx
def yder_6th(f,dy,x=[],y=[],z=[],param=[],dim=[]):

    if (f.ndim != 3 and f.ndim != 4):
        print("%s dimension arrays not handled." % (str(f.ndim)))
        raise ValueError

    if not param:
        param=read_param(quiet=True)
    if not dim:
        dim=read_dim()

    if len(y) < 1:
        gd  = read_grid(quiet=True)
        y = gd.y
    dy=N.gradient(y)
    if (dim.ny!=1):
        dy2 = 1./(60.*dy)
    dfdy = N.zeros_like(f)
    m1 = 3
    m2 = f.shape[-2]-3

    if (m2 > m1 and dim.ny != 1):
        for m in range(m1,m2):
            dfdy[...,m,:] = dy2[m]*( +45.*(f[...,m+1,:]-f[...,m-1,:]) 
                                      -9.*(f[...,m+2,:]-f[...,m-2,:]) 
                                      +   (f[...,m+3,:]-f[...,m-3,:]) )
    else:
        dfdy = 0.
    if param.coord_system == ('cylindric' or 'spherical'):
        if len(x) < 1:
            gd=read_grid(quiet=True)
            x=gd.x
        dfdy /= x
        
    return dfdy
def zder_6th(f, dz, x=[], y=[], z=[], run2D=False, param=[], dim=[]):

    if (f.ndim != 3 and f.ndim != 4):
        print("%s dimension arrays not handled." % (str(f.ndim)))
        raise ValueError

    if not param:
        param = read_param(quiet=True)
    if not dim:
        dim = read_dim()

    if len(z) < 1:
        gd = read_grid(quiet=True)
        z = gd.z
    dz = N.gradient(z)
    if (dim.nz != 1):
        dz2 = 1. / (60. * dz)
    dfdz = N.zeros_like(f)

    n1 = 3
    if run2D:
        n2 = f.shape[1] - 3
    else:
        n2 = f.shape[-3] - 3

    if (n2 > n1 and dim.nz != 1):
        if (run2D):
            # f[...,z,x] or f[...,z,y]
            for n in range(n1, n2):
                dfdz[...,
                     n, :] = dz2[n] * (+45. *
                                       (f[..., n + 1, :] - f[..., n - 1, :]) -
                                       9. *
                                       (f[..., n + 2, :] - f[..., n - 2, :]) +
                                       (f[..., n + 3, :] - f[..., n - 3, :]))

        else:
            # f[...,z,y,x]
            for n in range(n1, n2):
                dfdz[..., n, :, :] = dz2[n] * (
                    +45. * (f[..., n + 1, :, :] - f[..., n - 1, :, :]) - 9. *
                    (f[..., n + 2, :, :] - f[..., n - 2, :, :]) +
                    (f[..., n + 3, :, :] - f[..., n - 3, :, :]))
    else:
        dfdz = 0
    if param.coord_system == 'spherical':
        if (len(x) or len(y)) < 1:
            gd = read_grid(quiet=True)
            x = gd.x
            y = gd.y
        sin_y = N.sin(y)
        siny1 = 1. / sin_y
        i_sin = N.where(N.abs(sin_y) < 1e-5)[0]
        if i_sin.size > 0:
            siny1[i_sin] = 0.
        x_1, sin1th = N.meshgrid(1. / x, siny1)
        dfdz *= x_1 * sin1th

    return dfdz
Пример #17
0
def read_slices(field='uu1',
                datadir='data',
                proc=-1,
                extension='xz',
                format='native',
                oldfile=False):
    """
    Read 2D slice files and return an array of (nslices, vsize, hsize).
    """
    datadir = os.path.expanduser(datadir)
    if proc < 0:
        filename = join(datadir, 'slice_' + field + '.' + extension)
    else:
        filename = join(datadir, 'proc' + str(proc),
                        'slice_' + field + '.' + extension)

    # Read the global dimensions.
    dim = read_dim(datadir, proc)
    if dim.precision == 'D':
        precision = 'd'
    else:
        precision = 'f'

    # Set up slice plane.
    if extension.startswith('xy'):
        hsize = dim.nx
        vsize = dim.ny
    if extension.startswith('xz'):
        hsize = dim.nx
        vsize = dim.nz
    if extension.startswith('yz'):
        hsize = dim.ny
        vsize = dim.nz

    infile = npfile(filename, endian=format)

    islice = 0
    t = np.zeros(1, dtype=precision)
    slices = np.zeros(1, dtype=precision)

    while True:
        try:
            raw_data = infile.fort_read(precision)
        except ValueError:
            break
        except TypeError:
            break

        if oldfile:
            t = np.concatenate((t, raw_data[-1:]))
            slices = np.concatenate((slices, raw_data[:-1]))
        else:
            t = np.concatenate((t, raw_data[-2:-1]))
            slices = np.concatenate((slices, raw_data[:-2]))
        islice += 1

    output = slices[1:].reshape(islice, vsize, hsize)

    return output, t[1:]
Пример #18
0
def curl(f,dx,dy,dz,x=[],y=[],z=[],run2D=False,param=[],dim=[]):
    """
    take the curl of a pencil code vector array.
    23-fev-2009/dintrans+morin: introduced the run2D parameter to deal
    with pure 2-D snapshots (solved the (x,z)-plane pb)
    """
    if (f.shape[0] != 3):
        print("curl: must have vector 4-D array f[3,mz,my,mx] for curl")
        raise ValueError

    if not param:
        param = read_param(quiet=True)
    if not dim:
        dim = read_dim()
    if len(x) < 1:
        gd = read_grid(quiet=True, param=param)
        x = gd.x
        y = gd.y
        z = gd.z

    curl = N.empty_like(f)
    if (not(run2D)):
    # 3-D case
        curl[0,...] = yder(f[2,...],dy,x=x,y=y,z=z,param=param,dim=dim) -\
                      zder(f[1,...],dz,x=x,y=y,z=z,param=param,dim=dim)
        curl[1,...] = zder(f[0,...],dz,x=x,y=y,z=z,param=param,dim=dim) -\
                      xder(f[2,...],dx,x=x,y=y,z=z,param=param,dim=dim)
        curl[2,...] = xder(f[1,...],dx,x=x,y=y,z=z,param=param,dim=dim) -\
                      yder(f[0,...],dy,x=x,y=y,z=z,param=param,dim=dim)
    elif (dim.ny == 1):
    # 2-D case in the (x,z)-plane
    # f[...,nz,1,nx] if run2D=False or f[...,nz,nx] if run2D=True
        curl[0,...] = zder(f,dz,x=x,y=y,z=z,run2D=run2D,param=param, \
        dim=dim)[0,...] - xder(f,dx,x=x,y=y,z=z,param=param,dim=dim)[2,...]
    elif (dim.nz ==1):
    # 2-D case in the (x,y)-plane
    # f[...,1,ny,nx] if run2D=False or f[...,ny,nx] if run2D=True
        curl[0,...] = xder(f,dx,x=x,y=y,z=z,param=param,dim=dim)[1,...] -\
                      yder(f,dy,x=x,y=y,z=z,param=param,dim=dim)[0,...]

    if param.coord_system == 'cylindric':
    # 2-D case in the (r,theta)-plane
        if run2D:
            curl[0,...] += f[1,...]/x
        else:
    # 3-D case
            curl[2,...] += f[1,...]/x
    if param.coord_system == 'spherical':
        sin_y = N.sin(y)
        cos_y = N.cos(y)
        i_sin = N.where(N.abs(sin_y) < 1e-5)[0]
        if i_sin.size > 0:
            cos_y[i_sin] = 0.; sin_y[i_sin] = 1
        x_1, cotth = N.meshgrid(1./x, cos_y/sin_y)
        curl[0,...] += f[2,...]*x_1*cotth
        curl[1,...] -= f[2,...]/x
        curl[2,...] += f[1,...]/x

    return curl
Пример #19
0
def read_yaver(datadir='data/',format='native',point=(-1,-1)):

    """read 2D yaverage.dat file.

    point -- an array of 2-tuples (iz,ix) representing discrete
             points to be returned in an output array (not implemented yet)
    
    returns a tuple (yavg, t), yavg has shape (noutputs,nvars,nz,nx)

    """
    datadir = os.path.expanduser(datadir)
    datatopdir = re.sub('data\/*$','',datadir)
    filename = datadir+'/yaverages.dat'

    # which variables are averaged?
    infile = open(datatopdir+'yaver.in')
    variables = [line.strip() for line in infile.readlines()]
    infile.close()

    # global dim
    dim = read_dim(datadir) 
    if dim.precision == 'D':
        precision = 'd'
    else:
        precision = 'f'

    infile = npfile(filename,endian=format)
    
    t = N.zeros(1,dtype=precision)
    yaver = []
    yaver_shape = (len(variables),dim.nz,dim.nx)
    ntime = 0
    
    while 1:
        try:
            raw_data = infile.fort_read(precision,shape=1)
        except ValueError:
            break
        except TypeError:
            break

        t = N.concatenate((t,raw_data))

        try:
            raw_data = infile.fort_read(precision,shape=yaver_shape)
        except ValueError:
            #print "Problem: seems there is a t without corresponding data. yaverages.dat may be corrupted" # Python 2
            print("Problem: seems there is a t without corresponding data. yaverages.dat may be corrupted")
            break
        except TypeError:
            #print "Problem: seems there is a t without corresponding data. yaverages.dat may be corrupted" # Python 2
            print("Problem: seems there is a t without corresponding data. yaverages.dat may be corrupted")
            break
        yaver.append(raw_data)
        ntime += 1

    output = N.array(yaver)
    return output,t[1:]
Пример #20
0
def read_slices(field='uu1', datadir='data', proc=-1,
                extension='xz', format='native', oldfile=False):
    """
    Read 2D slice files and return an array of (nslices, vsize, hsize).
    """
    datadir = os.path.expanduser(datadir)
    if proc < 0:
        filename = join(datadir, 'slice_' + field + '.' + extension)
    else:
        filename = join(datadir, 'proc' + str(proc),
                        'slice_' + field + '.' + extension)

    # Read the global dimensions.
    dim = read_dim(datadir, proc)
    if dim.precision == 'D':
        precision = 'd'
    else:
        precision = 'f'

    # Set up slice plane.
    if extension.startswith('xy'):
        hsize = dim.nx
        vsize = dim.ny
    if extension.startswith('xz'):
        hsize = dim.nx
        vsize = dim.nz
    if extension.startswith('yz'):
        hsize = dim.ny
        vsize = dim.nz

    infile = npfile(filename, endian=format)

    islice = 0
    t = np.zeros(1, dtype=precision)
    slices = np.zeros(1, dtype=precision)

    while True:
        try:
            raw_data = infile.fort_read(precision)
        except ValueError:
            break
        except TypeError:
            break

        if oldfile:
            t = np.concatenate((t, raw_data[-1:]))
            slices = np.concatenate((slices, raw_data[:-1]))
        else:
            t = np.concatenate((t, raw_data[-2:-1]))
            slices = np.concatenate((slices, raw_data[:-2]))
        islice += 1

    output = slices[1:].reshape(islice, vsize, hsize)

    return output, t[1:]
def zder_6th(f,dz,x=[],y=[],z=[],run2D=False,param=[],dim=[]):
    
    if (f.ndim != 3 and f.ndim != 4):
        print("%s dimension arrays not handled." % (str(f.ndim)))
        raise ValueError

    if not param:
        param=read_param(quiet=True)
    if not dim:
        dim=read_dim()

    if len(z) < 1:
        gd  = read_grid(quiet=True)
        z = gd.z
    dz=N.gradient(z)
    if (dim.nz!=1):
        dz2 = 1./(60.*dz)
    dfdz = N.zeros_like(f)

    n1 = 3
    if run2D:
        n2 = f.shape[1]-3
    else:
        n2 = f.shape[-3]-3

    if (n2 > n1 and dim.nz!=1):
        if (run2D):
            # f[...,z,x] or f[...,z,y]
            for n in range(n1,n2):
                dfdz[...,n,:] = dz2[n]*(+45.*(f[...,n+1,:]-f[...,n-1,:])
                                         -9.*(f[...,n+2,:]-f[...,n-2,:])
                                            +(f[...,n+3,:]-f[...,n-3,:]) )

        else:
            # f[...,z,y,x]
            for n in range(n1,n2):
                dfdz[...,n,:,:] = dz2[n]*(+45.*(f[...,n+1,:,:]-f[...,n-1,:,:])
                                           -9.*(f[...,n+2,:,:]-f[...,n-2,:,:])
                                              +(f[...,n+3,:,:]-f[...,n-3,:,:]) )
    else:
        dfdz=0
    if param.coord_system == 'spherical':
        if (len(x) or len(y)) < 1:
            gd=read_grid(quiet=True)
            x=gd.x; y=gd.y
        sin_y = N.sin(y)
        siny1 = 1./sin_y
        i_sin = N.where(N.abs(sin_y) < 1e-5)[0]
        if i_sin.size > 0:
            siny1[i_sin] = 0.
        x_1, sin1th = N.meshgrid(1./x, siny1)
        dfdz *= x_1*sin1th

    return dfdz
Пример #22
0
def read_xyaver(varfile='xyaverages.dat',datadir='data/', quiet=0):
    """read xy averaged data.

    returns a class xyaver containing a 1D time array and a 2D t-z array.

    """
    datadir = os.path.expanduser(datadir)
    dim = read_dim(datadir=datadir)
    nz = dim.nz
    datatopdir = re.sub('data\/*$','',datadir)

    infile = open(datatopdir+'xyaver.in')
    variables = [line.strip() for line in infile.readlines()]
    infile.close()
    
    #gotta be a better way to do this...
    n_lines = int(check_output('wc '+datadir+'/'+varfile).split()[0])

    datafile = open(datadir+'/'+varfile)    
    n_vars = len(variables)
    # each line of data has 8 values
    rec_length = 1 + int(n_vars*nz/8) # integer division?
    if nz%8:
        rec_length += 1
    n_data_records = int(n_lines/rec_length) # integer division?
    if (not quiet):
        #print "%s: reading %i records" % (__name__,n_data_records) # Python 2
        print(__name__ + ": reading {0} records".format(n_data_records))
    
    # change the hardcode dtype!
    t = []
    var_tmp = dict(zip(variables,[[] for var in variables]))
    for i in range(n_data_records):
        t.extend(N.fromfile(datafile,dtype='float32',count=1,sep=' '))
        for var in variables:
            var_tmp[var].append(N.fromfile(datafile,
                                         dtype='float32',count=nz,sep=' '))

    datafile.close()
    #pack data into a class
    xyaver = XyAver()
    xyaver.t = N.array(t)

    for var in variables:
        setattr(xyaver,var,N.array(var_tmp[var]))
    return xyaver
Пример #23
0
def read_xyaver(varfile='xyaverages.dat', datadir='data/', quiet=0):
    """read xy averaged data.

    returns a class xyaver containing a 1D time array and a 2D t-z array.

    """
    datadir = os.path.expanduser(datadir)
    dim = read_dim(datadir=datadir)
    nz = dim.nz
    datatopdir = re.sub('data\/*$', '', datadir)

    infile = open(datatopdir + 'xyaver.in')
    variables = [line.strip() for line in infile.readlines()]
    infile.close()

    #gotta be a better way to do this...
    n_lines = int(check_output(["wc", datadir + '/' + varfile]).split()[0])

    datafile = open(datadir + '/' + varfile)
    n_vars = len(variables)
    # each line of data has 8 values
    rec_length = 1 + int(n_vars * nz / 8)  # integer division?
    if nz % 8:
        rec_length += 1
    n_data_records = int(n_lines / rec_length)  # integer division?
    if (not quiet):
        #print "%s: reading %i records" % (__name__,n_data_records) # Python 2
        print(__name__ + ": reading {0} records".format(n_data_records))

    # change the hardcode dtype!
    t = []
    var_tmp = dict(zip(variables, [[] for var in variables]))
    for i in range(n_data_records):
        t.extend(N.fromfile(datafile, dtype='float32', count=1, sep=' '))
        for var in variables:
            var_tmp[var].append(
                N.fromfile(datafile, dtype='float32', count=nz, sep=' '))

    datafile.close()
    #pack data into a class
    xyaver = XyAver()
    xyaver.t = N.array(t)

    for var in variables:
        setattr(xyaver, var, N.array(var_tmp[var]))
    return xyaver
def zder2_6th(f, dz, x=[], y=[], z=[], param=[], dim=[]):

    if (f.ndim != 3 and f.ndim != 4):
        print("%s dimension arrays not handled." % (str(f.ndim)))
        raise ValueError

    if (len(z) < 1):
        gd = read_grid(quiet=True)
        z = gd.z
    if not param:
        param = read_param(quiet=True)
    if not dim:
        dim = read_dim()

    dz = N.gradient(z)
    if (dim.nz != 1):
        dz2 = 1. / (180. * dz**2.)
    dfdz = N.zeros_like(f)
    n1 = 3
    n2 = f.shape[-3] - 3

    if (n2 > n1 and dim.nz != 1):
        for n in range(n1, n2):
            dfdz[..., n, :, :] = dz2[n] * (
                -490. * f[..., n, :, :] + 270. *
                (f[..., n - 1, :, :] + f[..., n + 1, :, :]) - 27. *
                (f[..., n - 2, :, :] + f[..., n + 2, :, :]) + 2. *
                (f[..., n - 3, :, :] + f[..., n + 3, :, :]))
    else:
        dfdz = 0.
    if param.coord_system == 'spherical':
        if (len(x) or len(y)) < 1:
            gd = read_grid(quiet=True)
            x = gd.x
            y = gd.y
        sin_y = N.sin(y)
        siny1 = 1. / sin_y
        i_sin = N.where(N.abs(sin_y) < 1e-5)[0]
        if i_sin.size > 0:
            siny1[i_sin] = 0.
        x_2, sin2th = N.meshgrid(1. / x**2, siny1**2)
        dfdz *= x_2 * sin2th

    return dfdz
def zder2_6th(f,dz,x=[],y=[],z=[],param=[],dim=[]):

    if (f.ndim != 3 and f.ndim != 4):
        print("%s dimension arrays not handled." % (str(f.ndim)))
        raise ValueError

    if (len(z) < 1):
        gd=read_grid(quiet=True)
        z=gd.z
    if not param:
        param=read_param(quiet=True)
    if not dim:
        dim=read_dim()

    dz = N.gradient(z)
    if (dim.nz!=1):
        dz2 = 1./(180.*dz**2.)
    dfdz = N.zeros_like(f)
    n1 = 3
    n2 = f.shape[-3]-3
    
    if (n2 > n1 and dim.nz!=1):
        for n in range(n1,n2): 
            dfdz[...,n,:,:] = dz2[n]*(-490.* f[...,n,:,:]
                                      +270.*(f[...,n-1,:,:]+f[...,n+1,:,:])
                                      - 27.*(f[...,n-2,:,:]+f[...,n+2,:,:])
                                      +  2.*(f[...,n-3,:,:]+f[...,n+3,:,:]) )
    else:
        dfdz = 0.
    if param.coord_system == 'spherical':
        if (len(x) or len(y)) < 1:
            gd=read_grid(quiet=True)
            x=gd.x; y=gd.y
        sin_y = N.sin(y)
        siny1 = 1./sin_y
        i_sin = N.where(N.abs(sin_y) < 1e-5)[0]
        if i_sin.size > 0:
            siny1[i_sin] = 0.
        x_2, sin2th = N.meshgrid(1./x**2, siny1**2)
        dfdz *= x_2*sin2th

    return dfdz
def xder6_6th(f,dx,x=[],y=[],z=[]):
    if (f.ndim != 3 and f.ndim != 4):
        print("%s dimension arrays not handled." % (str(f.ndim)))
        raise ValueError

    l1 = 3
    l2 = f.shape[-1] - 3
    dx = N.gradient(x)
    if (dim.nx!=1):
        fac=1/dx**6
    d6fdx = N.zeros_like(f)

    dim=read_dim()

    if (l2 > l1 and dim.nx!=1):
        for l in range(l1,l2): 
            d6fdx[...,l] = fac[l]*( - 20.0* f[...,l] 
                                    + 15.0*(f[...,l+1]+f[...,l-1]) 
                                    -  6.0*(f[...,l+2]+f[...,l-2]) 
                                    +      (f[...,l+3]+f[...,l-3]))

    return d6fdx
def xder6_6th(f, dx, x=[], y=[], z=[]):
    if (f.ndim != 3 and f.ndim != 4):
        print("%s dimension arrays not handled." % (str(f.ndim)))
        raise ValueError

    l1 = 3
    l2 = f.shape[-1] - 3
    dx = N.gradient(x)
    if (dim.nx != 1):
        fac = 1 / dx**6
    d6fdx = N.zeros_like(f)

    dim = read_dim()

    if (l2 > l1 and dim.nx != 1):
        for l in range(l1, l2):
            d6fdx[..., l] = fac[l] * (-20.0 * f[..., l] + 15.0 *
                                      (f[..., l + 1] + f[..., l - 1]) - 6.0 *
                                      (f[..., l + 2] + f[..., l - 2]) +
                                      (f[..., l + 3] + f[..., l - 3]))

    return d6fdx
def zder6_6th(f,dz,x=[],y=[],z=[]):
    if (f.ndim != 3 and f.ndim != 4):
        print("%s dimension arrays not handled." % (str(f.ndim)))
        raise ValueError

    n1 = 3
    n2 = f.shape[-3] - 3
    dz = N.gradient(z)
    if (dim.nz!=1):
        fac=1/dz**6
    d6fdz = N.zeros_like(f)

    dim = read_dim()

    if (n2 > n1 and dim.nz!=1):
        for n in range(n1,n2):
            d6fdz[...,n,:,:] = fac[n]*(- 20.0* f[...,n,:,:] 
                                       + 15.0*(f[...,n+1,:,:]+f[...,n-1,:,:]) 
                                       -  6.0*(f[...,n+2,:,:]+f[...,n-2,:,:]) 
                                       +      (f[...,n+3,:,:]+f[...,n-3,:,:]))
    
    return d6fdz
def yder6_6th(f,dy,x=[],y=[],z=[]):
    if (f.ndim != 3 and f.ndim != 4):
        print("%s dimension arrays not handled." % (str(f.ndim)))
        raise ValueError

    m1 = 3
    m2 = f.shape[-2] - 3
    dy = N.gradient(y)
    if (dim.ny!=1):
        fac=1/dy**6
    d6fdy = N.zeros_like(f)
    
    dim=read_dim()

    if (m2 > m1 and dim.ny!=1):
        for m in range(m1,m2):
            d6fdy[...,m1:m2,:] = fac[m]*(- 20.0* f[...,m,:] 
                                         + 15.0*(f[...,m+1,:]+f[...,m-1,:]) 
                                         -  6.0*(f[...,m+2,:]+f[...,m-2,:]) 
                                         +      (f[...,m+3,:]+f[...,m-3,:]))
    
    return d6fdy
def zder6_6th(f, dz, x=[], y=[], z=[]):
    if (f.ndim != 3 and f.ndim != 4):
        print("%s dimension arrays not handled." % (str(f.ndim)))
        raise ValueError

    n1 = 3
    n2 = f.shape[-3] - 3
    dz = N.gradient(z)
    if (dim.nz != 1):
        fac = 1 / dz**6
    d6fdz = N.zeros_like(f)

    dim = read_dim()

    if (n2 > n1 and dim.nz != 1):
        for n in range(n1, n2):
            d6fdz[..., n, :, :] = fac[n] * (
                -20.0 * f[..., n, :, :] + 15.0 *
                (f[..., n + 1, :, :] + f[..., n - 1, :, :]) - 6.0 *
                (f[..., n + 2, :, :] + f[..., n - 2, :, :]) +
                (f[..., n + 3, :, :] + f[..., n - 3, :, :]))

    return d6fdz
Пример #31
0
def grad(f,dx,dy,dz,x=[],y=[],z=[],param=[],dim=[]):
    """
    take the gradient of a pencil code scalar array.
    """
    if (f.ndim != 3):
        print("grad: must have scalar 3-D array f[mz,my,mx] for gradient")
        raise ValueError

    if not param:
        param=read_param(quiet=True)
    if not dim:
        dim=read_dim()
    if len(x) < 1:
        gd = read_grid(quiet=True)
        x = gd.x
        y = gd.y
        z = gd.z

    grad = N.empty((3,)+f.shape)
    grad[0,...] = xder(f,dx,x=x,y=y,z=z,param=param,dim=dim)
    grad[1,...] = yder(f,dy,x=x,y=y,z=z,param=param,dim=dim)
    grad[2,...] = zder(f,dz,x=x,y=y,z=z,param=param,dim=dim)

    return grad
def yder6_6th(f, dy, x=[], y=[], z=[]):
    if (f.ndim != 3 and f.ndim != 4):
        print("%s dimension arrays not handled." % (str(f.ndim)))
        raise ValueError

    m1 = 3
    m2 = f.shape[-2] - 3
    dy = N.gradient(y)
    if (dim.ny != 1):
        fac = 1 / dy**6
    d6fdy = N.zeros_like(f)

    dim = read_dim()

    if (m2 > m1 and dim.ny != 1):
        for m in range(m1, m2):
            d6fdy[...,
                  m1:m2, :] = fac[m] * (-20.0 * f[..., m, :] + 15.0 *
                                        (f[..., m + 1, :] + f[..., m - 1, :]) -
                                        6.0 *
                                        (f[..., m + 2, :] + f[..., m - 2, :]) +
                                        (f[..., m + 3, :] + f[..., m - 3, :]))

    return d6fdy
Пример #33
0
def read_yaver(datadir='data/', format='native', point=(-1, -1)):
    """read 2D yaverage.dat file.

    point -- an array of 2-tuples (iz,ix) representing discrete
             points to be returned in an output array (not implemented yet)
    
    returns a tuple (yavg, t), yavg has shape (noutputs,nvars,nz,nx)

    """
    datadir = os.path.expanduser(datadir)
    datatopdir = re.sub('data\/*$', '', datadir)
    filename = datadir + '/yaverages.dat'

    # which variables are averaged?
    infile = open(datatopdir + 'yaver.in')
    variables = [line.strip() for line in infile.readlines()]
    infile.close()

    # global dim
    dim = read_dim(datadir)
    if dim.precision == 'D':
        precision = 'd'
    else:
        precision = 'f'

    infile = npfile(filename, endian=format)

    t = N.zeros(1, dtype=precision)
    yaver = []
    yaver_shape = (len(variables), dim.nz, dim.nx)
    ntime = 0

    while 1:
        try:
            raw_data = infile.fort_read(precision, shape=1)
        except ValueError:
            break
        except TypeError:
            break

        t = N.concatenate((t, raw_data))

        try:
            raw_data = infile.fort_read(precision, shape=yaver_shape)
        except ValueError:
            #print "Problem: seems there is a t without corresponding data. yaverages.dat may be corrupted" # Python 2
            print(
                "Problem: seems there is a t without corresponding data. yaverages.dat may be corrupted"
            )
            break
        except TypeError:
            #print "Problem: seems there is a t without corresponding data. yaverages.dat may be corrupted" # Python 2
            print(
                "Problem: seems there is a t without corresponding data. yaverages.dat may be corrupted"
            )
            break
        yaver.append(raw_data)
        ntime += 1

    output = N.array(yaver)
    return output, t[1:]
Пример #34
0
def make_movie(field='uu1', datadir='data/', proc=-1, extension='xz',
               format='native', tmin=0., tmax=1.e38, amin=0., amax=1.,
               transform='', oldfile=False):
    """
    read 2D slice files and assemble an animation in a mpg movie.

    Quickly written from the example at
    http://matplotlib.sourceforge.net/faq/howto_faq.html

    Options:

     field --- which variable to slice
     datadir --- path to data directory
     proc --- an integer giving the processor to read a slice from
     extension --- which plane of xy,xz,yz,Xz. for 2D this should be overwritten.
     format --- endian. one of little, big, or native (default)
     tmin --- start time
     tmax --- end time
     amin --- minimum value for image scaling
     amax --- maximum value for image scaling
     transform --- insert arbitrary numerical code to modify the slice
    """

    import pylab as plt

    datadir = os.path.expanduser(datadir)
    if proc < 0:
        filename = datadir + '/slice_' + field + '.' + extension
    else:
        filename = datadir + '/proc' + \
            str(proc) + '/slice_' + field + '.' + extension

    # Read the global dimensions.
    dim = read_dim(datadir, proc)
    if dim.precision == 'D':
        precision = 'd'
    else:
        precision = 'f'

    # Set up slice plane.
    if extension == 'xy' or extension == 'Xy':
        hsize = dim.nx
        vsize = dim.ny
    if extension == 'xz':
        hsize = dim.nx
        vsize = dim.nz
    if extension == 'yz':
        hsize = dim.ny
        vsize = dim.nz
    plane = np.zeros((vsize, hsize), dtype=precision)

    infile = npfile(filename, endian=format)

    files = []
    fig = plt.figure(figsize=(5, 10))
    ax = fig.add_subplot(111)

    ifirst = True
    islice = 0
    while True:
        try:
            raw_data = infile.fort_read(precision)
        except ValueError:
            break
        except TypeError:
            break

        if oldfile:
            t = raw_data[-1]
            plane = raw_data[:-1].reshape(vsize, hsize)
        else:
            t = raw_data[-2]
            plane = raw_data[:-2].reshape(vsize, hsize)

        if transform:
            exec('plane = plane' + transform)

        if t > tmin and t < tmax:
            ax.cla()
            ax.imshow(plane, vmin=amin, vmax=amax)
            fname = '_tmp%03d.png' % islice
            print('Saving frame' + fname)
            fig.savefig(fname)
            files.append(fname)

            if ifirst:
                #print "----islice----------t---------min-------max-------delta" # Python 2
                print("----islice----------t---------min-------max-------delta")
            #print "%10i %10.3e %10.3e %10.3e %10.3e" % \ # Python 2
                #(islice, t, plane.min(), plane.max(), plane.max() - plane.min()) # Python 2
            print("{0:10} {1:10.3e} {2:10.3e} {3:10.3e} {4:10.3e}".format(islice, t, plane.min(), plane.max(), plane.max() - plane.min()))

            ifirst = False
            islice += 1

    #print 'Making movie animation.mpg - this make take a while'
    print('Making movie animation.mpg - this make take a while')
    # SC: Not all systems use mencoder. Need to change this into ffmpeg.
    os.system("mencoder 'mf://_tmp*.png' -mf type=png:fps=24 -ovc lavc -lavcopts vcodec=wmv2 -oac copy -o animation.mpg")
    os.system("rm _tmp*.png")
    infile.close()
Пример #35
0
    def __init__(self,
                 varfile='',
                 datadir='data/',
                 proc=-1,
                 ivar=-1,
                 quiet=False,
                 trimall=False,
                 format='native',
                 param=None,
                 dim=None,
                 index=None,
                 run2D=False,
                 magic=None,
                 setup=None):
        """
        Description:
        -----------
        Read VAR files from pencil code. if proc < 0, then load all data
        and assemble. otherwise, load VAR file from specified processor.

        format -- one of (['native', 'n'], ['ieee-le', 'l'],
        ['ieee-be', 'B']) for byte-ordering

        Params:
        ------
            varfile=''
            datadir='data/'
            proc=-1
            ivar=-1
            quiet=False
            trimall=False
            format='native'
            param=None
            dim=None
            index=None
            run2D=False

        Example of usage
        ------
        ff=pc.read_var(trimall=True,ivar=100,magic=['tt','vort'])

        """
        if (setup is not None):
            datadir = os.path.expanduser(setup.datadir)
            dim = setup.dim
            param = setup.param
            index = setup.index
            run2D = setup.run2D
        else:
            datadir = os.path.expanduser(datadir)
            if dim is None:
                ldownsampled = 'VARd' in varfile
                dim = read_dim(datadir, proc, down=ldownsampled)
            if param is None:
                param = read_param(datadir=datadir, quiet=quiet)
            if index is None:
                index = read_index(datadir=datadir, down=ldownsampled)

        if dim.precision == 'D':
            precision = 'd'
        else:
            precision = 'f'

        if param.lwrite_aux:
            totalvars = dim.mvar + dim.maux
        else:
            totalvars = dim.mvar
        if 'VARd' in varfile:
            if param.mvar_down > 0:
                totalvars = param.mvar_down

        # Read index.pro to get positions and "names"
        # of variables in f(mx,my,mz,nvar).
        # Thomas: seems useless now ?
        #exec(index) # this loads the indicies.

        if (not varfile):
            if ivar < 0:
                varfile = 'var.dat'
            else:
                varfile = 'VAR' + str(ivar)

        if proc < 0:
            procdirs = natural_sort(
                filter(lambda s: s.startswith('proc'), os.listdir(datadir)))
        else:
            procdirs = ['proc' + str(proc)]

        #global array
        if (not run2D):
            f = np.zeros((totalvars, dim.mz, dim.my, dim.mx), dtype=precision)
        else:
            if dim.ny == 1:
                f = np.zeros((totalvars, dim.mz, dim.mx), dtype=precision)
            else:
                f = np.zeros((totalvars, dim.my, dim.mx), dtype=precision)
        x = np.zeros(dim.mx, dtype=precision)
        y = np.zeros(dim.my, dtype=precision)
        z = np.zeros(dim.mz, dtype=precision)
        for directory in procdirs:

            proc = int(directory[4:])
            procdim = read_dim(datadir, proc, down=ldownsampled)
            if (not quiet):
                #print "reading data from processor %i of %i ..." \ # Python 2
                #% (proc, len(procdirs)) # Python 2
                print("reading data from processor {0} of {1} ...".format(
                    proc, len(procdirs)))

            mxloc = procdim.mx
            myloc = procdim.my
            mzloc = procdim.mz

            #read data
            filename = os.path.join(datadir, directory, varfile)
            infile = npfile(filename, endian=format)
            if (not run2D):
                f_loc = infile.fort_read(precision,
                                         shape=(-1, mzloc, myloc, mxloc))
            else:
                if dim.ny == 1:
                    f_loc = infile.fort_read(precision,
                                             shape=(-1, mzloc, mxloc))
                else:
                    f_loc = infile.fort_read(precision,
                                             shape=(-1, myloc, mxloc))
            raw_etc = infile.fort_read(precision)
            infile.close()

            t = raw_etc[0]
            x_loc = raw_etc[1:mxloc + 1]
            y_loc = raw_etc[mxloc + 1:mxloc + myloc + 1]
            z_loc = raw_etc[mxloc + myloc + 1:mxloc + myloc + mzloc + 1]
            if (param.lshear):
                shear_offset = 1
                deltay = raw_etc[-1]
            else:
                shear_offset = 0

            dx = raw_etc[-3 - shear_offset]
            dy = raw_etc[-2 - shear_offset]
            dz = raw_etc[-1 - shear_offset]

            if len(procdirs) > 1:
                # Calculate where the local processor will go in
                # the global array.

                # Don't overwrite ghost zones of processor to the left (and
                # accordingly in y and z direction--makes a difference on the
                # diagonals).
                #
                # Recall that in NumPy, slicing is NON-INCLUSIVE on the right end
                # ie, x[0:4] will slice all of a 4-digit array, not produce
                # an error like in idl.

                if procdim.ipx == 0:
                    i0x = 0
                    i1x = i0x + procdim.mx
                    i0xloc = 0
                    i1xloc = procdim.mx
                else:
                    i0x = procdim.ipx * procdim.nx + procdim.nghostx
                    i1x = i0x + procdim.mx - procdim.nghostx
                    i0xloc = procdim.nghostx
                    i1xloc = procdim.mx

                if procdim.ipy == 0:
                    i0y = 0
                    i1y = i0y + procdim.my
                    i0yloc = 0
                    i1yloc = procdim.my
                else:
                    i0y = procdim.ipy * procdim.ny + procdim.nghosty
                    i1y = i0y + procdim.my - procdim.nghosty
                    i0yloc = procdim.nghosty
                    i1yloc = procdim.my

                if procdim.ipz == 0:
                    i0z = 0
                    i1z = i0z + procdim.mz
                    i0zloc = 0
                    i1zloc = procdim.mz
                else:
                    i0z = procdim.ipz * procdim.nz + procdim.nghostz
                    i1z = i0z + procdim.mz - procdim.nghostz
                    i0zloc = procdim.nghostz
                    i1zloc = procdim.mz

                x[i0x:i1x] = x_loc[i0xloc:i1xloc]
                y[i0y:i1y] = y_loc[i0yloc:i1yloc]
                z[i0z:i1z] = z_loc[i0zloc:i1zloc]

                if (not run2D):
                    f[:, i0z:i1z, i0y:i1y, i0x:i1x] = \
                        f_loc[:, i0zloc:i1zloc, i0yloc:i1yloc, i0xloc:i1xloc]
                else:
                    if dim.ny == 1:
                        f[:, i0z:i1z, i0x:i1x] = \
                              f_loc[:, i0zloc:i1zloc, i0xloc:i1xloc]
                    else:
                        f[:, i0y:i1y, i0x:i1x] = \
                              f_loc[:, i0yloc:i1yloc, i0xloc:i1xloc]
            else:
                f = f_loc
                x = x_loc
                y = y_loc
                z = z_loc
            #endif MPI run
        #endfor directories loop

        if (magic is not None):
            if ('bb' in magic):
                # Compute the magnetic field before doing trimall.
                aa = f[index['ax'] - 1:index['az'], ...]
                self.bb = curl(aa, dx, dy, dz, x, y, z, run2D=param.lwrite_2d)
                if (trimall):
                    self.bb = self.bb[:, dim.n1:dim.n2 + 1, dim.m1:dim.m2 + 1,
                                      dim.l1:dim.l2 + 1]
            if ('jj' in magic):
                # Compute the electric current field before doing trimall.
                aa = f[index['ax'] - 1:index['az'], ...]
                self.jj = curl2(aa, dx, dy, dz, x, y, z)
                if (trimall):
                    self.jj = self.jj[:, dim.n1:dim.n2 + 1, dim.m1:dim.m2 + 1,
                                      dim.l1:dim.l2 + 1]
            if ('vort' in magic):
                # Compute the vorticity field before doing trimall.
                uu = f[index['ux'] - 1:index['uz'], ...]
                self.vort = curl(uu,
                                 dx,
                                 dy,
                                 dz,
                                 x,
                                 y,
                                 z,
                                 run2D=param.lwrite_2d)
                if (trimall):
                    if (param.lwrite_2d):
                        if (dim.nz == 1):
                            self.vort = self.vort[:, dim.m1:dim.m2 + 1,
                                                  dim.l1:dim.l2 + 1]
                        else:
                            self.vort = self.vort[:, dim.n1:dim.n2 + 1,
                                                  dim.l1:dim.l2 + 1]
                    else:
                        self.vort = self.vort[:, dim.n1:dim.n2 + 1,
                                              dim.m1:dim.m2 + 1,
                                              dim.l1:dim.l2 + 1]

        # Trim the ghost zones of the global f-array if asked.
        if trimall:
            self.x = x[dim.l1:dim.l2 + 1]
            self.y = y[dim.m1:dim.m2 + 1]
            self.z = z[dim.n1:dim.n2 + 1]
            if (not run2D):
                self.f = f[:, dim.n1:dim.n2 + 1, dim.m1:dim.m2 + 1,
                           dim.l1:dim.l2 + 1]
            else:
                if dim.ny == 1:
                    self.f = f[:, dim.n1:dim.n2 + 1, dim.l1:dim.l2 + 1]
                else:
                    self.f = f[:, dim.m1:dim.m2 + 1, dim.l1:dim.l2 + 1]
        else:
            self.x = x
            self.y = y
            self.z = z
            self.f = f
            self.l1 = dim.l1
            self.l2 = dim.l2 + 1
            self.m1 = dim.m1
            self.m2 = dim.m2 + 1
            self.n1 = dim.n1
            self.n2 = dim.n2 + 1

        # Assign an attribute to self for each variable defined in
        # 'data/index.pro' so that e.g. self.ux is the x-velocity.
        for key, value in index.items():
            # print key,value.
            if key != 'global_gg':
                setattr(self, key, self.f[value - 1, ...])
        # special treatment for vector quantities
        if 'uu' in index.keys():
            self.uu = self.f[index['ux'] - 1:index['uz'], ...]
        if 'aa' in index.keys():
            self.aa = self.f[index['ax'] - 1:index['az'], ...]
        # Also treat Fcr (from cosmicrayflux) as a vector.
        if 'fcr' in index.keys():
            self.fcr = self.f[index['fcr'] - 1:index['fcr'] + 2, ...]
            self.fcrx = self.fcr[0]
            self.fcry = self.fcr[1]
            self.fcrz = self.fcr[2]

        self.t = t
        self.dx = dx
        self.dy = dy
        self.dz = dz
        if param.lshear:
            self.deltay = deltay

        # Do the rest of magic after the trimall (i.e. no additional curl...).
        self.magic = magic
        if self.magic is not None:
            self.__magicAttributes(param)
Пример #36
0
    def __init__(self,
                 datadir='data/',
                 proc=-1,
                 ivar=-1,
                 quiet=False,
                 trim=False,
                 format='native',
                 param=None,
                 down=False):
        """
        Read grid from pencil code. if proc < 0, then load all data
        and assemble. otherwise, load grid from specified processor.
        """
        datadir = os.path.expanduser(datadir)
        if param is None:
            param = read_param(datadir, quiet=quiet)
        dim = read_dim(datadir, proc, down=down)
        if dim.precision == 'D':
            precision = 'd'
        else:
            precision = 'f'

        if proc < 0:
            procdirs = list(
                filter(lambda s: s.startswith('proc'), os.listdir(datadir)))
            if (param.io_strategy == 'MPI-IO|collect'
                    or param.io_strategy == 'collect'):
                procdirs = ['allprocs']
        else:
            procdirs = ['proc' + str(proc)]

        #global array
        x = N.zeros(dim.mx, dtype=precision)
        y = N.zeros(dim.my, dtype=precision)
        z = N.zeros(dim.mz, dtype=precision)
        dx_1 = N.zeros(dim.mx, dtype=precision)
        dy_1 = N.zeros(dim.my, dtype=precision)
        dz_1 = N.zeros(dim.mz, dtype=precision)
        dx_tilde = N.zeros(dim.mx, dtype=precision)
        dy_tilde = N.zeros(dim.my, dtype=precision)
        dz_tilde = N.zeros(dim.mz, dtype=precision)

        for directory in procdirs:
            if directory != 'allprocs':
                proc = int(directory[4:])
            procdim = read_dim(datadir, proc, down=down)
            if not quiet:
                #print "reading data from processor %i of %i ..." \ # Python 2
                #% (proc, len(procdirs)) # Python 2
                print("reading data from processor {0} of {1} ...".format(
                    proc, len(procdirs)))

            mxloc = procdim.mx
            myloc = procdim.my
            mzloc = procdim.mz

            #read data
            if down:
                griddat = 'grid_down.dat'
            else:
                griddat = 'grid.dat'
            filename = os.path.join(datadir, directory, griddat)
            infile = npfile(filename, endian=format)
            grid_raw = infile.fort_read(precision)
            dx, dy, dz = tuple(infile.fort_read(precision))
            Lx, Ly, Lz = tuple(infile.fort_read(precision))
            dx_1_raw = infile.fort_read(precision)
            dx_tilde_raw = infile.fort_read(precision)
            infile.close()

            #reshape
            t = grid_raw[0]
            x_loc = grid_raw[1:mxloc + 1]
            y_loc = grid_raw[mxloc + 1:mxloc + myloc + 1]
            z_loc = grid_raw[mxloc + myloc + 1:mxloc + myloc + mzloc + 1]
            dx_1_loc = dx_1_raw[0:mxloc]
            dy_1_loc = dx_1_raw[mxloc:mxloc + myloc]
            dz_1_loc = dx_1_raw[mxloc + myloc:mxloc + myloc + mzloc]
            dx_tilde_loc = dx_tilde_raw[0:mxloc]
            dy_tilde_loc = dx_tilde_raw[mxloc:mxloc + myloc]
            dz_tilde_loc = dx_tilde_raw[mxloc + myloc:mxloc + myloc + mzloc]

            if len(procdirs) > 1:
                if procdim.ipx == 0:
                    i0x = 0
                    i1x = i0x + procdim.mx
                    i0xloc = 0
                    i1xloc = procdim.mx
                else:
                    i0x = procdim.ipx * procdim.nx + procdim.nghostx
                    i1x = i0x + procdim.mx - procdim.nghostx
                    i0xloc = procdim.nghostx
                    i1xloc = procdim.mx

                if procdim.ipy == 0:
                    i0y = 0
                    i1y = i0y + procdim.my
                    i0yloc = 0
                    i1yloc = procdim.my
                else:
                    i0y = procdim.ipy * procdim.ny + procdim.nghosty
                    i1y = i0y + procdim.my - procdim.nghosty
                    i0yloc = procdim.nghosty
                    i1yloc = procdim.my

                if procdim.ipz == 0:
                    i0z = 0
                    i1z = i0z + procdim.mz
                    i0zloc = 0
                    i1zloc = procdim.mz
                else:
                    i0z = procdim.ipz * procdim.nz + procdim.nghostz
                    i1z = i0z + procdim.mz - procdim.nghostz
                    i0zloc = procdim.nghostz
                    i1zloc = procdim.mz

                x[i0x:i1x] = x_loc[i0xloc:i1xloc]
                y[i0y:i1y] = y_loc[i0yloc:i1yloc]
                z[i0z:i1z] = z_loc[i0zloc:i1zloc]
                dx_1[i0x:i1x] = dx_1_loc[i0xloc:i1xloc]
                dy_1[i0y:i1y] = dy_1_loc[i0yloc:i1yloc]
                dz_1[i0z:i1z] = dz_1_loc[i0zloc:i1zloc]
                dx_tilde[i0x:i1x] = dx_tilde_loc[i0xloc:i1xloc]
                dy_tilde[i0y:i1y] = dy_tilde_loc[i0yloc:i1yloc]
                dz_tilde[i0z:i1z] = dz_tilde_loc[i0zloc:i1zloc]

            else:
                x = x_loc
                y = y_loc
                z = z_loc
                dx_1 = dx_1_loc
                dy_1 = dy_1_loc
                dz_1 = dz_1_loc
                dx_tilde = dx_tilde_loc
                dy_tilde = dy_tilde_loc
                dz_tilde = dz_tilde_loc
            #endif MPI run

        # end directories loop
        if trim:
            self.x = x[dim.l1:dim.l2 + 1]
            self.y = y[dim.m1:dim.m2 + 1]
            self.z = z[dim.n1:dim.n2 + 1]
            self.dx_1 = dx_1[dim.l1:dim.l2 + 1]
            self.dy_1 = dy_1[dim.m1:dim.m2 + 1]
            self.dx_1 = dz_1[dim.n1:dim.n2 + 1]
            self.dx_tilde = dx_tilde[dim.l1:dim.l2 + 1]
            self.dy_tilde = dy_tilde[dim.m1:dim.m2 + 1]
            self.dx_tilde = dz_tilde[dim.n1:dim.n2 + 1]
        else:
            self.x = x
            self.y = y
            self.z = z
            self.dx_1 = dx_1
            self.dy_1 = dy_1
            self.dx_1 = dz_1
            self.dx_tilde = dx_tilde
            self.dy_tilde = dy_tilde
            self.dx_tilde = dz_tilde

        self.t = t
        self.dx = dx
        self.dy = dy
        self.dz = dz
        self.Lx = Lx
        self.Ly = Ly
        self.Lz = Lz
Пример #37
0
def time_slices(field=['uu1'], datadir='data/', proc=-1, extension='xz',
                format='native', tmin=0., tmax=1.e38, amin=0., amax=1.,
                transform='plane[0]', dtstep=1, deltat=0,
                oldfile=False, outfile=""):
    """
    Read a list of 1D slice files, combine them, and plot the slice in
    one dimension, and time in the other one.

    Options:

     field --- list of variables to slice
     datadir --- path to data directory
     proc --- an integer giving the processor to read a slice from
     extension --- which plane of xy,xz,yz,Xz. for 2D this should be overwritten.
     format --- endian. one of little, big, or native (default)
     tmin --- start time
     tmax --- end time
     amin --- minimum value for image scaling
     amax --- maximum value for image scaling
     transform --- insert arbitrary numerical code to combine the slices
     dtstep --- only plot every dt step
     deltat --- if set to nonzero, plot at fixed time interval rather than step
     outfile --- if set, write the slice values in the text file
    """

    import pylab as plt

    datadir = os.path.expanduser(datadir)
    if outfile != "":
        outslice = open(outfile, "w")
    filename = []
    if proc < 0:
        for i in field:
            filename += [datadir + '/slice_' + i + '.' + extension]
    else:
        for i in field:
            filename += [datadir + '/proc' +
                         str(proc) + '/slice_' + i + '.' + extension]

    # Read the global dimensions.
    dim = read_dim(datadir, proc)
    if dim.precision == 'D':
        precision = 'd'
    else:
        precision = 'f'

    # Set up slice plane.
    if extension == 'xy' or extension == 'Xy':
        hsize = dim.nx
        vsize = dim.ny
    if extension == 'xz':
        hsize = dim.nx
        vsize = dim.nz
    if extension == 'yz':
        hsize = dim.ny
        vsize = dim.nz
    plane = []
    infile = []
    for i in filename:
        plane += [np.zeros((vsize, hsize), dtype=precision)]

        infile += [npfile(i, endian=format)]

    ifirst = True
    islice = 0
    plotplane = []
    dt = 0
    nextt = tmin
    while True:
        try:
            raw_data = []
            for i in infile:
                raw_data += [i.fort_read(precision)]
        except ValueError:
            break
        except TypeError:
            break

        if oldfile:
            t = raw_data[0][-1]
            for i in range(len(raw_data)):
                plane[i] = raw_data[i][:-1].reshape(vsize, hsize)
        else:
            t = raw_data[0][-2]
            for i in range(len(raw_data)):
                plane[i] = raw_data[i][:-2].reshape(vsize, hsize)

        exec('tempplane =' + transform)

        if t > tmin and t < tmax:
            if dt == 0:
                plotplane += tempplane.tolist()

                if ifirst:
                    #print "----islice----------t---------min-------max-------delta" # Python 2
                    print("----islice----------t---------min-------max-------delta")
                #print "%10i %10.3e %10.3e %10.3e %10.3e" % \ # Python 2
                    #(islice, t, tempplane.min(), tempplane.max(), # Python 2
                     #tempplane.max() - tempplane.min()) # Python 2
                print("{0:10} {1:10.3e} {2:10.3e} {3:10.3e} {4:10.3e}".format(islice, t, tempplane.min(), tempplane.max(), tempplane.max() - tempplane.min()))
                if outfile != "":
                    outslice.write(
                        #"%10i %10.3e %10.3e %10.3e %10.3e" % # Python 2
                        #(islice, # Python 2
                         #t, # Python 2
                         #tempplane.min(), # Python 2
                            #tempplane.max(), # Python 2
                            #tempplane.max() - # Python 2
                            #tempplane.min())) # Python 2
                        "{0:10} {1:10.3e} {2:10.3e} {3:10.3e} {4:10.3e}".format(
                            islice,
                            t,
                            tempplane.min(),
                            tempplane.max(),
                            tempplane.max() -
                            tempplane.min()))                        
                    outslice.write("\n")

                ifirst = False
                islice += 1
                nextt = t + deltat
            if deltat == 0:
                dt = (dt + 1) % dtstep
            elif t >= nextt:
                dt = 0
                nextt = t + deltat
            else:
                dt = 1

    ax = plt.axes()
    ax.set_xlabel('t')
    ax.set_ylabel('y')
    ax.set_ylim
    plt.imshow(np.array(plotplane).reshape(islice, vsize).transpose(),
               vmin=amin, vmax=amax)
    manager = plt.get_current_fig_manager()
    manager.show()

    for i in infile:
        i.close()
    if outfile != "":
        outslice.close()
Пример #38
0
def animate_multislices(field=['uu1'], datadir='data/', proc=-1,
                        extension='xz', format='native', tmin=0., tmax=1.e38,
                        amin=0., amax=1., transform='plane[0]',
                        oldfile=False, outfile=""):
    """
    Read a list of 2D slice files, combine them, and assemble an animation.

    Options:

     field --- list of variables to slice
     datadir --- path to data directory
     proc --- an integer giving the processor to read a slice from
     extension --- which plane of xy,xz,yz,Xz. for 2D this should be overwritten.
     format --- endian. one of little, big, or native (default)
     tmin --- start time
     tmax --- end time
     amin --- minimum value for image scaling
     amax --- maximum value for image scaling
     transform --- insert arbitrary numerical code to combine the slices
     outfile --- if set, write the slice values in the text file
    """

    import pylab as plt

    datadir = os.path.expanduser(datadir)
    if outfile != "":
        outslice = open(outfile, "w")
    filename = []
    if proc < 0:
        for i in field:
            filename += [datadir + '/slice_' + i + '.' + extension]
    else:
        for i in field:
            filename += [datadir + '/proc' +
                         str(proc) + '/slice_' + i + '.' + extension]

    # Read the global dimensions.
    dim = read_dim(datadir, proc)
    if dim.precision == 'D':
        precision = 'd'
    else:
        precision = 'f'

    # Set up slice plane.
    if extension == 'xy' or extension == 'Xy':
        hsize = dim.nx
        vsize = dim.ny
    if extension == 'xz':
        hsize = dim.nx
        vsize = dim.nz
    if extension == 'yz':
        hsize = dim.ny
        vsize = dim.nz
    plane = []
    infile = []
    for i in filename:
        plane += [np.zeros((vsize, hsize), dtype=precision)]

        infile += [npfile(i, endian=format)]

    ax = plt.axes()
    ax.set_xlabel('x')
    ax.set_ylabel('y')
    ax.set_ylim

    exec('plotplane =' + transform)
    image = plt.imshow(plotplane, vmin=amin, vmax=amax)

    # Get the figure manager for real-time image display.
    manager = plt.get_current_fig_manager()
    manager.show()

    ifirst = True
    islice = 0
    while True:
        try:
            raw_data = []
            for i in infile:
                raw_data += [i.fort_read(precision)]
        except ValueError:
            break
        except TypeError:
            break

        if oldfile:
            t = raw_data[0][-1]
            for i in range(len(raw_data)):
                plane[i] = raw_data[i][:-1].reshape(vsize, hsize)
        else:
            t = raw_data[0][-2]
            for i in range(len(raw_data)):
                plane[i] = raw_data[i][:-2].reshape(vsize, hsize)

        exec('plotplane =' + transform)

        if t > tmin and t < tmax:
            title = 't = %11.3e' % t
            ax.set_title(title)
            image.set_data(plotplane)
            manager.canvas.draw()

            if ifirst:
                #print "----islice----------t---------min-------max-------delta" # Python 2
                print("----islice----------t---------min-------max-------delta")
            #print "%10i %10.3e %10.3e %10.3e %10.3e" % \ # Python 2
                #(islice, t, plotplane.min(), plotplane.max(), # Python 2
                 #plotplane.max() - plotplane.min()) # Python 2
            print("{0:10} {1:10.3e} {2:10.3e} {3:10.3e} {4:10.3e}".format(islice, t, plotplane.min(), plotplane.max(),
                 plotplane.max() - plotplane.min()))
            if outfile != "":
                #outslice.write("%10i %10.3e %10.3e %10.3e %10.3e" % # Python 2
                               #(islice, t, plotplane.min(), plotplane.max(), # Python 2
                                #plotplane.max() - plotplane.min())) # Python 2
                outslice.write("{0:10} {1:10.3e} {2:10.3e} {3:10.3e} {4:10.3e}".format(islice, t, plotplane.min(), plotplane.max(), plotplane.max() - plotplane.min()))
                outslice.write("\n")

            ifirst = False
            islice += 1

    for i in infile:
        i.close()
    if outfile != "":
        outslice.close()
Пример #39
0
def animate_slices_crossflow(field='uu1', datadir='data/', proc=-1, extension='yz',
                   format='native', tmin=0., tmax=1.e38, wait=0.,
                   amin=0., amax=1., transform='', oldfile=False):
    """
    read 2D slice files and assemble an animation.

    Options:

     field --- which variable to slice
     datadir --- path to data directory
     proc --- an integer giving the processor to read a slice from
     extension --- which plane of xy,xz,yz,Xz. for 2D this should be overwritten.
     format --- endian. one of little, big, or native (default)
     tmin --- start time
     tmax --- end time
     amin --- minimum value for image scaling
     amax --- maximum value for image scaling
     transform --- insert arbitrary numerical code to modify the slice
     wait --- pause in seconds between animation slices
    """

    import pylab as plt
    import matplotlib.patches as ptc
    import matplotlib.ticker as ticker

    datadir = os.path.expanduser(datadir)
    if proc < 0:
        filename = join(datadir, 'slice_' + field + '.' + extension)
    else:
        filename = join(datadir, 'proc' + str(proc),
                        'slice_' + field + '.' + extension)

    # Read the global dimensions.
    dim = read_dim(datadir, proc)
    if dim.precision == 'D':
        precision = 'd'
    else:
        precision = 'f'

    # Set up slice plane.
    if extension == 'xy' or extension == 'Xy':
        hsize = dim.nx
        vsize = dim.ny
    if extension == 'xz':
        hsize = dim.nx
        vsize = dim.nz
    if extension == 'yz':
        hsize = dim.ny
        vsize = dim.nz
    plane = np.zeros((vsize, hsize), dtype=precision)

    infile = npfile(filename, endian=format)

    ax = plt.axes()
    ax.set_xlabel('y')
    ax.set_ylabel('x')
    ax.set_ylim


    name_list_x = ('0', '2D', '4D', '6D')
    #name_list_z = ('12D', '10D', '8D', '6D', '4D','2D','0')
    name_list_z = ( '0', '2D', '4D', '6D','8D','10D','12D',)
    pos_list_x = np.array([0,80,160,240])
    pos_list_z = np.array([0,80,160,240,320,400,480])

    name_list_x = ('0', '5D', '10D')
    name_list_z = ( '0', '5D', '10D', '15D','20D')
    pos_list_x = np.array([0,159,319])
    pos_list_z = np.array([0,159,319,479,639])
    #pos_list = np.arange(len(name_list))

#ax = plt.axes()
    #ax.xaxis.set_major_locator(ticker.FixedLocator((pos_list_x)))
    #ax.xaxis.set_major_formatter(ticker.FixedFormatter((name_list_x)))
    #ax.yaxis.set_major_locator(ticker.FixedLocator((pos_list_z)))
    #ax.yaxis.set_major_formatter(ticker.FixedFormatter((name_list_z)))
    ax.get_xaxis().set_visible(False)
    ax.get_yaxis().set_visible(False)


    # turbulent particle sim xy-vew, Ddx=40
    #r=20
    #xy = [120,240]
#    art = ptc.Circle(xy,r,color='black')
#    ax.add_artist(art)
    # uniform flow sim xy-vew, Ddx=64
   # r=16
   # xy = [160,320]
    # Pencil-tests, Re=400, Ddx=96
    #r=48
    #xy = [480,960]
    # Pencil-tests, Re=100, Ddx=64
    r=32
    xy = [320,640]
    art = ptc.Circle(xy,r,color='black')
    ax.add_artist(art)
     

    #ax.add_patch(patches.Rectangle(
    #        (220,0),
    #        40,
    #        320,
    #        color='gray'
    #    )
    #)

    image = plt.imshow(plane, vmin=amin, vmax=amax)

    # Get the figure manager for real-time image display.
    manager = plt.get_current_fig_manager()
    manager.show()

    ifirst = True
    islice = 0
    while True:
        try:
            raw_data = infile.fort_read(precision)
        except ValueError:
            break
        except TypeError:
            break

        if oldfile:
            t = raw_data[-1]
            plane = raw_data[:-1].reshape(vsize, hsize)
        else:
            t = raw_data[-2]
            plane = raw_data[:-2].reshape(vsize, hsize)

        if transform:
            exec('plane = plane' + transform)

        if t > tmin and t < tmax:
            #title = 't = %11.3e' % t
            #ax.set_title(title)
            image.set_data(plane)
            manager.canvas.draw()

            if ifirst:
                #print "----islice----------t---------min-------max-------delta" # Python 2
                print("----islice----------t---------min-------max-------delta")
            #print "%10i %10.3e %10.3e %10.3e %10.3e" \ # Python 2
                #% (islice, t, plane.min(), plane.max(), plane.max() - plane.min()) # Python 2
            print("{0:10} {1:10.3e} {2:10.3e} {3:10.3e} {4:10.3e}".format(islice, t, plane.min(), plane.max(), plane.max() - plane.min()))

            ifirst = False
            fname = '_tmp%03d.eps' % islice
            plt.savefig(fname,fonttype=42,
                  bbox_inches = 'tight', 
                 # pad_inches = 0,
                  dpi = 600, transparant=True)
            #plt.savefig(fname,fonttype=42)
            islice += 1

            sleep(wait)

    infile.close()
Пример #40
0
def animate_multislices(field=['uu1'], datadir='data/', proc=-1,
                        extension='xz', format='native', tmin=0., tmax=1.e38,
                        amin=0., amax=1., transform='plane[0]',
                        oldfile=False, outfile=""):
    """
    Read a list of 2D slice files, combine them, and assemble an animation.

    Options:

     field --- list of variables to slice
     datadir --- path to data directory
     proc --- an integer giving the processor to read a slice from
     extension --- which plane of xy,xz,yz,Xz. for 2D this should be overwritten.
     format --- endian. one of little, big, or native (default)
     tmin --- start time
     tmax --- end time
     amin --- minimum value for image scaling
     amax --- maximum value for image scaling
     transform --- insert arbitrary numerical code to combine the slices
     outfile --- if set, write the slice values in the text file
    """

    import pylab as plt

    datadir = os.path.expanduser(datadir)
    if outfile != "":
        outslice = open(outfile, "w")
    filename = []
    if proc < 0:
        for i in field:
            filename += [datadir + '/slice_' + i + '.' + extension]
    else:
        for i in field:
            filename += [datadir + '/proc' +
                         str(proc) + '/slice_' + i + '.' + extension]

    # Read the global dimensions.
    dim = read_dim(datadir, proc)
    if dim.precision == 'D':
        precision = 'd'
    else:
        precision = 'f'

    # Set up slice plane.
    if extension == 'xy' or extension == 'Xy':
        hsize = dim.nx
        vsize = dim.ny
    if extension == 'xz':
        hsize = dim.nx
        vsize = dim.nz
    if extension == 'yz':
        hsize = dim.ny
        vsize = dim.nz
    plane = []
    infile = []
    for i in filename:
        plane += [np.zeros((vsize, hsize), dtype=precision)]

        infile += [npfile(i, endian=format)]

    ax = plt.axes()
    ax.set_xlabel('x')
    ax.set_ylabel('y')
    ax.set_ylim

    exec('plotplane =' + transform)
    image = plt.imshow(plotplane, vmin=amin, vmax=amax)

    # Get the figure manager for real-time image display.
    manager = plt.get_current_fig_manager()
    manager.show()

    ifirst = True
    islice = 0
    while True:
        try:
            raw_data = []
            for i in infile:
                raw_data += [i.fort_read(precision)]
        except ValueError:
            break
        except TypeError:
            break

        if oldfile:
            t = raw_data[0][-1]
            for i in range(len(raw_data)):
                plane[i] = raw_data[i][:-1].reshape(vsize, hsize)
        else:
            t = raw_data[0][-2]
            for i in range(len(raw_data)):
                plane[i] = raw_data[i][:-2].reshape(vsize, hsize)

        exec('plotplane =' + transform)

        if t > tmin and t < tmax:
            title = 't = %11.3e' % t
            ax.set_title(title)
            image.set_data(plotplane)
            manager.canvas.draw()

            if ifirst:
                #print "----islice----------t---------min-------max-------delta" # Python 2
                print("----islice----------t---------min-------max-------delta")
            #print "%10i %10.3e %10.3e %10.3e %10.3e" % \ # Python 2
                #(islice, t, plotplane.min(), plotplane.max(), # Python 2
                 #plotplane.max() - plotplane.min()) # Python 2
            print("{0:10} {1:10.3e} {2:10.3e} {3:10.3e} {4:10.3e}".format(islice, t, plotplane.min(), plotplane.max(),
                 plotplane.max() - plotplane.min()))
            if outfile != "":
                #outslice.write("%10i %10.3e %10.3e %10.3e %10.3e" % # Python 2
                               #(islice, t, plotplane.min(), plotplane.max(), # Python 2
                                #plotplane.max() - plotplane.min())) # Python 2
                outslice.write("{0:10} {1:10.3e} {2:10.3e} {3:10.3e} {4:10.3e}".format(islice, t, plotplane.min(), plotplane.max(), plotplane.max() - plotplane.min()))
                outslice.write("\n")

            ifirst = False
            islice += 1

    for i in infile:
        i.close()
    if outfile != "":
        outslice.close()
Пример #41
0
    def __init__(self, varfile='', datadir='data/', proc=-1, ivar=-1,
                 quiet=False, trimall=False, format='native',
                 param=None, dim=None, index=None, run2D=False,
                 magic=None, setup=None):
        """
        Description:
        -----------
        Read VAR files from pencil code. if proc < 0, then load all data
        and assemble. otherwise, load VAR file from specified processor.

        format -- one of (['native', 'n'], ['ieee-le', 'l'],
        ['ieee-be', 'B']) for byte-ordering

        Params:
        ------
            varfile=''
            datadir='data/'
            proc=-1
            ivar=-1
            quiet=False
            trimall=False
            format='native'
            param=None
            dim=None
            index=None
            run2D=False
        """
        if (setup is not None):
            datadir = os.path.expanduser(setup.datadir)
            dim = setup.dim
            param = setup.param
            index = setup.index
            run2D = setup.run2D
        else:
            datadir = os.path.expanduser(datadir)
            if dim is None:
                dim = read_dim(datadir,proc)
            if param is None:
                param = read_param(datadir=datadir, quiet=quiet)
            if index is None:
                index = read_index(datadir=datadir)

        if dim.precision == 'D':
            precision = 'd'
        else:
            precision = 'f'

        if param.lwrite_aux:
            totalvars = dim.mvar+dim.maux
        else:
            totalvars = dim.mvar

        # Read index.pro to get positions and "names"
        # of variables in f(mx,my,mz,nvar).
        # Thomas: seems useless now ?
        #exec(index) # this loads the indicies.

        if (not varfile):
            if ivar < 0:
                varfile = 'var.dat'
            else:
                varfile = 'VAR'+str(ivar)

        if proc < 0:
            procdirs = natural_sort(filter(lambda s:s.startswith('proc'),
                                    os.listdir(datadir)))
        else:
            procdirs = ['proc'+str(proc)]

        #global array
        if (not run2D):
            f = np.zeros((totalvars, dim.mz, dim.my, dim.mx),
                         dtype=precision)
        else:
            if dim.ny == 1:
                f = np.zeros((totalvars, dim.mz, dim.mx), dtype=precision)
            else:
                f = np.zeros((totalvars, dim.my, dim.mx), dtype=precision)
        x = np.zeros(dim.mx, dtype=precision)
        y = np.zeros(dim.my, dtype=precision)
        z = np.zeros(dim.mz, dtype=precision)
        for directory in procdirs:

            proc = int(directory[4:])
            procdim = read_dim(datadir, proc)
            if (not quiet):
                #print "reading data from processor %i of %i ..." \ # Python 2
                      #% (proc, len(procdirs)) # Python 2
                print("reading data from processor {0} of {1} ...".format(proc, len(procdirs)))

            mxloc = procdim.mx
            myloc = procdim.my
            mzloc = procdim.mz

            #read data
            filename = os.path.join(datadir,directory,varfile)
            infile = npfile(filename, endian=format)
            if (not run2D):
                f_loc = infile.fort_read(precision,
                                         shape=(-1, mzloc, myloc, mxloc))
            else:
                if dim.ny == 1:
                    f_loc = infile.fort_read(precision, shape=(-1, mzloc, mxloc))
                else:
                    f_loc = infile.fort_read(precision, shape=(-1, myloc, mxloc))
            raw_etc = infile.fort_read(precision)
            infile.close()

            t = raw_etc[0]
            x_loc = raw_etc[1:mxloc+1]
            y_loc = raw_etc[mxloc+1:mxloc+myloc+1]
            z_loc = raw_etc[mxloc+myloc+1:mxloc+myloc+mzloc+1]
            if (param.lshear):
                shear_offset = 1
                deltay = raw_etc[-1]
            else:
                shear_offset = 0

            dx = raw_etc[-3-shear_offset]
            dy = raw_etc[-2-shear_offset]
            dz = raw_etc[-1-shear_offset]

            if len(procdirs) > 1:
                # Calculate where the local processor will go in
                # the global array.

                # Don't overwrite ghost zones of processor to the left (and
                # accordingly in y and z direction--makes a difference on the
                # diagonals).
                #
                # Recall that in NumPy, slicing is NON-INCLUSIVE on the right end
                # ie, x[0:4] will slice all of a 4-digit array, not produce
                # an error like in idl.

                if procdim.ipx == 0:
                    i0x = 0
                    i1x = i0x+procdim.mx
                    i0xloc = 0
                    i1xloc = procdim.mx
                else:
                    i0x = procdim.ipx*procdim.nx+procdim.nghostx
                    i1x = i0x+procdim.mx-procdim.nghostx
                    i0xloc = procdim.nghostx
                    i1xloc = procdim.mx

                if procdim.ipy == 0:
                    i0y = 0
                    i1y = i0y+procdim.my
                    i0yloc = 0
                    i1yloc = procdim.my
                else:
                    i0y = procdim.ipy*procdim.ny+procdim.nghosty
                    i1y = i0y+procdim.my-procdim.nghosty
                    i0yloc = procdim.nghosty
                    i1yloc = procdim.my

                if procdim.ipz == 0:
                    i0z = 0
                    i1z = i0z+procdim.mz
                    i0zloc = 0
                    i1zloc = procdim.mz
                else:
                    i0z = procdim.ipz*procdim.nz+procdim.nghostz
                    i1z = i0z+procdim.mz-procdim.nghostz
                    i0zloc = procdim.nghostz
                    i1zloc = procdim.mz

                x[i0x:i1x] = x_loc[i0xloc:i1xloc]
                y[i0y:i1y] = y_loc[i0yloc:i1yloc]
                z[i0z:i1z] = z_loc[i0zloc:i1zloc]

                if (not run2D):
                    f[:, i0z:i1z, i0y:i1y, i0x:i1x] = \
                        f_loc[:, i0zloc:i1zloc, i0yloc:i1yloc, i0xloc:i1xloc]
                else:
                    if dim.ny == 1:
                        f[:, i0z:i1z, i0x:i1x] = \
                              f_loc[:, i0zloc:i1zloc, i0xloc:i1xloc]
                    else:
                        f[:, i0y:i1y, i0x:i1x] = \
                              f_loc[:, i0yloc:i1yloc, i0xloc:i1xloc]
            else:
                f = f_loc
                x = x_loc
                y = y_loc
                z = z_loc
            #endif MPI run
        #endfor directories loop

        if (magic is not None):
            if ('bb' in magic):
                # Compute the magnetic field before doing trimall.
                aa = f[index['ax']-1:index['az'],...]
                self.bb = curl(aa,dx,dy,dz,run2D=param.lwrite_2d)
                if (trimall): self.bb=self.bb[:, dim.n1:dim.n2+1,
                dim.m1:dim.m2+1, dim.l1:dim.l2+1]
            if ('jj' in magic):
                # Compute the electric current field before doing trimall.
                aa = f[index['ax']-1:index['az'],...]
                self.jj = curl2(aa,dx,dy,dz)
                if (trimall): self.jj=self.jj[:, dim.n1:dim.n2+1,
                dim.m1:dim.m2+1, dim.l1:dim.l2+1]
            if ('vort' in magic):
                # Compute the vorticity field before doing trimall.
                uu = f[index['ux']-1:index['uz'],...]
                self.vort = curl(uu,dx,dy,dz,run2D=param.lwrite_2d)
                if (trimall):
                    if (param.lwrite_2d):
                        if (dim.nz == 1):
                            self.vort=self.vort[:, dim.m1:dim.m2+1,
                            dim.l1:dim.l2+1]
                        else:
                            self.vort=self.vort[:, dim.n1:dim.n2+1,
                            dim.l1:dim.l2+1]
                    else:
                        self.vort=self.vort[:, dim.n1:dim.n2+1,
                        dim.m1:dim.m2+1, dim.l1:dim.l2+1]

        # Trim the ghost zones of the global f-array if asked.
        if trimall:
            self.x = x[dim.l1:dim.l2+1]
            self.y = y[dim.m1:dim.m2+1]
            self.z = z[dim.n1:dim.n2+1]
            if (not run2D):
                self.f = f[:, dim.n1:dim.n2+1, dim.m1:dim.m2+1, dim.l1:dim.l2+1]
            else:
               if dim.ny == 1:
                   self.f = f[:, dim.n1:dim.n2+1, dim.l1:dim.l2+1]
               else:
                   self.f = f[:, dim.m1:dim.m2+1, dim.l1:dim.l2+1]
        else:
            self.x = x
            self.y = y
            self.z = z
            self.f = f
            self.l1 = dim.l1
            self.l2 = dim.l2+1
            self.m1 = dim.m1
            self.m2 = dim.m2+1
            self.n1 = dim.n1
            self.n2 = dim.n2+1

        # Assign an attribute to self for each variable defined in
        # 'data/index.pro' so that e.g. self.ux is the x-velocity.
        for key,value in index.items():
            # print key,value.
            if key != 'global_gg':
                setattr(self,key,self.f[value-1,...])
        # special treatment for vector quantities
        if 'uu' in index.keys():
            self.uu = self.f[index['ux']-1:index['uz'],...]
        if 'aa' in index.keys():
            self.aa = self.f[index['ax']-1:index['az'],...]
        # Also treat Fcr (from cosmicrayflux) as a vector.
        if 'fcr' in index.keys():
            self.fcr = self.f[index['fcr']-1:index['fcr']+2,...]
            self.fcrx = self.fcr[0]
            self.fcry = self.fcr[1]
            self.fcrz = self.fcr[2]

        self.t = t
        self.dx = dx
        self.dy = dy
        self.dz = dz
        if param.lshear:
            self.deltay = deltay

        # Do the rest of magic after the trimall (i.e. no additional curl...).
        self.magic = magic
        if self.magic is not None:
            self.__magicAttributes(param)
Пример #42
0
def read_zaver(datadir='data/',
               format='native',
               point=(-1, -1),
               proc=-1,
               trange=(0, None),
               tindex=(0, None, 1)):
    """read 2D zaverage.dat file. If proc < 0, then load all data
    and assemble. Otherwise, load VAR file from specified processor.

    point -- an array of 2-tuples (iy,ix) representing discrete
             points to be returned in an output array (not implemented yet)
    
    proc -- Read data from proc if proc > -1, otherwise load all and assemble.

    trange -- read subset of data between time.min(), time.max() (0,None)

    tindex -- read every 1 data between indices 0 and None   
    
    returns a tuple (zavg, t), zavg has shape (noutputs,nvars,ny,nx)

    """
    datadir = os.path.expanduser(datadir)
    datatopdir = re.sub('data\/*$', '', datadir)

    if len(trange) != 2:
        print("Warning: trange must be a real/integer tuple of length 2 with" +
              " start and end time specified")
    if len(tindex) != 3:
        print("Warning: tindex must be an integer tuple of length 3 with" +
              " start and end indices and step specified")

    # which variables are averaged?
    infile = open(datatopdir + 'zaver.in')
    variables = [line.strip() for line in infile.readlines()]
    infile.close()

    # global dim
    dim = read_dim(datadir, proc=proc)
    if dim.precision == 'D':
        precision = 'd'
    else:
        precision = 'f'

    if proc < 0:
        procdirs = list(
            filter(lambda s: s.startswith('proc'), os.listdir(datadir)))
    else:
        procdirs = ['proc' + str(proc)]

    for directory in procdirs:
        ntime, ndx = 0, 0
        # local dimensions
        core = int(
            directory[4:]
        )  # SC: needed to rename proc to core to keep function argument
        procdim = read_dim(datadir, core)
        nxloc = procdim.nx
        nyloc = procdim.ny
        zaver_local = []
        zaver_loc_shape = (len(variables), procdim.ny, procdim.nx)

        #read data
        filename = os.path.join(datadir, directory, 'zaverages.dat')
        try:
            infile = npfile(filename, endian=format)
            t = N.zeros(1, dtype=precision)
        except:
            continue
        while 1:
            try:
                raw_data = infile.fort_read(precision, shape=1)
            except ValueError:
                break
            except TypeError:
                break

            if ndx >= tindex[0] and N.mod(ndx, tindex[2]) == 0:
                if raw_data >= trange[0]:
                    t = N.concatenate((t, raw_data))

            try:
                raw_data = infile.fort_read(precision, shape=zaver_loc_shape)
            except ValueError:
                #print "Problem: seems there is a t without corresponding data. zaverages.dat may be corrupted" # Python 2
                print(
                    "Problem: seems there is a t without corresponding data. zaverages.dat may be corrupted"
                )
                break
            except TypeError:
                #print "Problem: seems there is a t without corresponding data. zaverages.dat may be corrupted" # Python
                print(
                    "Problem: seems there is a t without corresponding data. zaverages.dat may be corrupted"
                )
                break
            if t.size - 1 > ntime and t[-1] >= trange[0]:
                zaver_local.append(raw_data)
                ntime += 1
            ndx += 1
            if tindex[1] is not None and ndx > tindex[1]:
                break
            if trange[1] is not None and t[-1] > trange[1]:
                break

        try:
            zaver
            pass
        except:
            zaver = N.zeros((ntime, len(variables), dim.ny, dim.nx))

        if (proc < 0):
            # append to the global zaver
            for i in range(ntime):
                zaver[i, :,
                      procdim.ipy * procdim.ny:(procdim.ipy + 1) * procdim.ny,
                      procdim.ipx * procdim.nx:(procdim.ipx + 1) *
                      procdim.nx] = zaver_local[i]
        else:
            for i in range(ntime):
                zaver[i, :, :, :] = zaver_local[i]

    return zaver, t[1:]
Пример #43
0
def particles_to_density(xxp, yyp, zzp, x, y, z):
    dim = read_dim()
    if dim.precision == 'D':
        precision = 'd'
    else:
        precision = 'f'
    nnp = np.zeros([dim.mz, dim.my, dim.mx])

    npar = len(xxp)

    for k in range(npar):

        xp = xxp[k]
        yp = yyp[k]
        zp = zzp[k]

        ix0 = find_index_bisect(xp, x)
        iy0 = find_index_bisect(yp, y)
        iz0 = find_index_bisect(zp, z)

        ixx0 = ix0 - 1
        ixx1 = ix0 + 1

        iyy0 = iy0 - 1
        iyy1 = iy0 + 1

        izz0 = iz0 - 1
        izz1 = iz0 + 1

        if (dim.nx > 1):
            dx = x[ix0] - x[ixx0]
        else:
            dx = 1.0

        if (dim.ny > 1):
            dy = y[iy0] - y[iyy0]
        else:
            dy = 1.0

        if (dim.nz > 1):
            dz = z[iz0] - z[izz0]
        else:
            dz = 1.0

        dx_1 = 1.0 / dx
        dy_1 = 1.0 / dy
        dz_1 = 1.0 / dz
        #
        dx_2 = 1.0 / dx**2
        dy_2 = 1.0 / dy**2
        dz_2 = 1.0 / dz**2

        #if (not ghost) then begin
        #  mx=nx+6 & l1=3 & l2=l1+nx-1
        #  x2=fltarr(mx)*one
        #  x2[l1:l2]=x
        #  for l=l1-1,   0,-1 do x2[l]=x2[l+1]-dx
        #  for l=l2+1,mx-1,+1 do x2[l]=x2[l-1]+dx
        #  x=x2

        #  my=ny+6 & m1=3 & m2=m1+ny-1
        #  y2=fltarr(my)*one
        #  y2[m1:m2]=y
        #  for m=m1-1,   0,-1 do y2[m]=y2[m+1]-dy
        #  for m=m2+1,my-1,+1 do y2[m]=y2[m-1]+dy
        #  y=y2
        #;
        #    if (dim.nz == 1):
        #        for n in np.arange(3):
        #            nn=n+1
        #            z[dim.n1-nn]=z[dim.n1]-nn*dz
        #            z[dim.n2+nn]=z[dim.n2]+nn*dz

        for ixx in np.arange(ixx0, ixx1 + 1):
            for iyy in np.arange(iyy0, iyy1 + 1):
                for izz in np.arange(izz0, izz1 + 1):

                    if (((ixx - ix0) == -1) or ((ixx - ix0) == +1)):
                        weight_x = 1.125 - 1.5 * abs(
                            xp - x[ixx]) * dx_1 + 0.5 * abs(xp -
                                                            x[ixx])**2 * dx_2
                    else:
                        if (dim.nx != 1):
                            weight_x = 0.75 - (xp - x[ixx])**2 * dx_2

                    if (((iyy - iy0) == -1) or ((iyy - iy0) == +1)):
                        weight_y = 1.125 - 1.5 * abs(
                            yp - y[iyy]) * dy_1 + 0.5 * abs(yp -
                                                            y[iyy])**2 * dy_2
                    else:
                        if (dim.ny != 1):
                            weight_y = 0.75 - (yp - y[iyy])**2 * dy_2

                    if (((izz - iz0) == -1) or ((izz - iz0) == +1)):
                        weight_z = 1.125 - 1.5 * abs(
                            zp - z[izz]) * dz_1 + 0.5 * abs(zp -
                                                            z[izz])**2 * dz_2
                    else:
                        if (dim.nz != 1):
                            weight_z = 0.75 - (zp - z[izz])**2 * dz_2

                    weight = 1.0
                    if (dim.nx != 1): weight = weight * weight_x
                    if (dim.ny != 1): weight = weight * weight_y
                    if (dim.nz != 1): weight = weight * weight_z
                    #
                    nnp[izz, iyy, ixx] = nnp[izz, iyy, ixx] + weight

    return nnp
Пример #44
0
def make_movie(field='uu1', datadir='data/', proc=-1, extension='xz',
               format='native', tmin=0., tmax=1.e38, amin=0., amax=1.,
               transform='', oldfile=False):
    """
    read 2D slice files and assemble an animation in a mpg movie.

    Quickly written from the example at
    http://matplotlib.sourceforge.net/faq/howto_faq.html

    Options:

     field --- which variable to slice
     datadir --- path to data directory
     proc --- an integer giving the processor to read a slice from
     extension --- which plane of xy,xz,yz,Xz. for 2D this should be overwritten.
     format --- endian. one of little, big, or native (default)
     tmin --- start time
     tmax --- end time
     amin --- minimum value for image scaling
     amax --- maximum value for image scaling
     transform --- insert arbitrary numerical code to modify the slice
    """

    import pylab as plt

    datadir = os.path.expanduser(datadir)
    if proc < 0:
        filename = datadir + '/slice_' + field + '.' + extension
    else:
        filename = datadir + '/proc' + \
            str(proc) + '/slice_' + field + '.' + extension

    # Read the global dimensions.
    dim = read_dim(datadir, proc)
    if dim.precision == 'D':
        precision = 'd'
    else:
        precision = 'f'

    # Set up slice plane.
    if extension == 'xy' or extension == 'Xy':
        hsize = dim.nx
        vsize = dim.ny
    if extension == 'xz':
        hsize = dim.nx
        vsize = dim.nz
    if extension == 'yz':
        hsize = dim.ny
        vsize = dim.nz
    plane = np.zeros((vsize, hsize), dtype=precision)

    infile = npfile(filename, endian=format)

    files = []
    fig = plt.figure(figsize=(5, 10))
    ax = fig.add_subplot(111)

    ifirst = True
    islice = 0
    while True:
        try:
            raw_data = infile.fort_read(precision)
        except ValueError:
            break
        except TypeError:
            break

        if oldfile:
            t = raw_data[-1]
            plane = raw_data[:-1].reshape(vsize, hsize)
        else:
            t = raw_data[-2]
            plane = raw_data[:-2].reshape(vsize, hsize)

        if transform:
            exec('plane = plane' + transform)

        if t > tmin and t < tmax:
            ax.cla()
            ax.imshow(plane, vmin=amin, vmax=amax)
            fname = '_tmp%03d.png' % islice
            print('Saving frame' + fname)
            fig.savefig(fname)
            files.append(fname)

            if ifirst:
                #print "----islice----------t---------min-------max-------delta" # Python 2
                print("----islice----------t---------min-------max-------delta")
            #print "%10i %10.3e %10.3e %10.3e %10.3e" % \ # Python 2
                #(islice, t, plane.min(), plane.max(), plane.max() - plane.min()) # Python 2
            print("{0:10} {1:10.3e} {2:10.3e} {3:10.3e} {4:10.3e}".format(islice, t, plane.min(), plane.max(), plane.max() - plane.min()))

            ifirst = False
            islice += 1

    #print 'Making movie animation.mpg - this make take a while'
    print('Making movie animation.mpg - this make take a while')
    # SC: Not all systems use mencoder. Need to change this into ffmpeg.
    os.system("mencoder 'mf://_tmp*.png' -mf type=png:fps=24 -ovc lavc -lavcopts vcodec=wmv2 -oac copy -o animation.mpg")
    os.system("rm _tmp*.png")
    infile.close()
Пример #45
0
def time_slices(field=['uu1'], datadir='data/', proc=-1, extension='xz',
                format='native', tmin=0., tmax=1.e38, amin=0., amax=1.,
                transform='plane[0]', dtstep=1, deltat=0,
                oldfile=False, outfile=""):
    """
    Read a list of 1D slice files, combine them, and plot the slice in
    one dimension, and time in the other one.

    Options:

     field --- list of variables to slice
     datadir --- path to data directory
     proc --- an integer giving the processor to read a slice from
     extension --- which plane of xy,xz,yz,Xz. for 2D this should be overwritten.
     format --- endian. one of little, big, or native (default)
     tmin --- start time
     tmax --- end time
     amin --- minimum value for image scaling
     amax --- maximum value for image scaling
     transform --- insert arbitrary numerical code to combine the slices
     dtstep --- only plot every dt step
     deltat --- if set to nonzero, plot at fixed time interval rather than step
     outfile --- if set, write the slice values in the text file
    """

    import pylab as plt

    datadir = os.path.expanduser(datadir)
    if outfile != "":
        outslice = open(outfile, "w")
    filename = []
    if proc < 0:
        for i in field:
            filename += [datadir + '/slice_' + i + '.' + extension]
    else:
        for i in field:
            filename += [datadir + '/proc' +
                         str(proc) + '/slice_' + i + '.' + extension]

    # Read the global dimensions.
    dim = read_dim(datadir, proc)
    if dim.precision == 'D':
        precision = 'd'
    else:
        precision = 'f'

    # Set up slice plane.
    if extension == 'xy' or extension == 'Xy':
        hsize = dim.nx
        vsize = dim.ny
    if extension == 'xz':
        hsize = dim.nx
        vsize = dim.nz
    if extension == 'yz':
        hsize = dim.ny
        vsize = dim.nz
    plane = []
    infile = []
    for i in filename:
        plane += [np.zeros((vsize, hsize), dtype=precision)]

        infile += [npfile(i, endian=format)]

    ifirst = True
    islice = 0
    plotplane = []
    dt = 0
    nextt = tmin
    while True:
        try:
            raw_data = []
            for i in infile:
                raw_data += [i.fort_read(precision)]
        except ValueError:
            break
        except TypeError:
            break

        if oldfile:
            t = raw_data[0][-1]
            for i in range(len(raw_data)):
                plane[i] = raw_data[i][:-1].reshape(vsize, hsize)
        else:
            t = raw_data[0][-2]
            for i in range(len(raw_data)):
                plane[i] = raw_data[i][:-2].reshape(vsize, hsize)

        exec('tempplane =' + transform)

        if t > tmin and t < tmax:
            if dt == 0:
                plotplane += tempplane.tolist()

                if ifirst:
                    #print "----islice----------t---------min-------max-------delta" # Python 2
                    print("----islice----------t---------min-------max-------delta")
                #print "%10i %10.3e %10.3e %10.3e %10.3e" % \ # Python 2
                    #(islice, t, tempplane.min(), tempplane.max(), # Python 2
                     #tempplane.max() - tempplane.min()) # Python 2
                print("{0:10} {1:10.3e} {2:10.3e} {3:10.3e} {4:10.3e}".format(islice, t, tempplane.min(), tempplane.max(), tempplane.max() - tempplane.min()))
                if outfile != "":
                    outslice.write(
                        #"%10i %10.3e %10.3e %10.3e %10.3e" % # Python 2
                        #(islice, # Python 2
                         #t, # Python 2
                         #tempplane.min(), # Python 2
                            #tempplane.max(), # Python 2
                            #tempplane.max() - # Python 2
                            #tempplane.min())) # Python 2
                        "{0:10} {1:10.3e} {2:10.3e} {3:10.3e} {4:10.3e}".format(
                            islice,
                            t,
                            tempplane.min(),
                            tempplane.max(),
                            tempplane.max() -
                            tempplane.min()))                        
                    outslice.write("\n")

                ifirst = False
                islice += 1
                nextt = t + deltat
            if deltat == 0:
                dt = (dt + 1) % dtstep
            elif t >= nextt:
                dt = 0
                nextt = t + deltat
            else:
                dt = 1

    ax = plt.axes()
    ax.set_xlabel('t')
    ax.set_ylabel('y')
    ax.set_ylim
    plt.imshow(np.array(plotplane).reshape(islice, vsize).transpose(),
               vmin=amin, vmax=amax)
    manager = plt.get_current_fig_manager()
    manager.show()

    for i in infile:
        i.close()
    if outfile != "":
        outslice.close()
Пример #46
0
    def __init__(self, datadir='data/', proc=-1, ivar=-1, quiet=False,
                 trim=False, format='native', param=None, down=False):
        """
        Read grid from pencil code. if proc < 0, then load all data
        and assemble. otherwise, load grid from specified processor.
        """
        datadir = os.path.expanduser(datadir)
        if param is None:
            param = read_param(datadir, quiet=quiet)
        dim = read_dim(datadir, proc, down=down)
        if dim.precision == 'D':
            precision = 'd'
        else:
            precision = 'f'

        if proc < 0:
            procdirs = list(filter(lambda s:s.startswith('proc'),
                                   os.listdir(datadir)))
        else:
            procdirs = ['proc'+str(proc)]

        #global array
        x = N.zeros(dim.mx, dtype=precision)
        y = N.zeros(dim.my, dtype=precision)
        z = N.zeros(dim.mz, dtype=precision)
        dx_1 = N.zeros(dim.mx, dtype=precision)
        dy_1 = N.zeros(dim.my, dtype=precision)
        dz_1 = N.zeros(dim.mz, dtype=precision)
        dx_tilde = N.zeros(dim.mx, dtype=precision)
        dy_tilde = N.zeros(dim.my, dtype=precision)
        dz_tilde = N.zeros(dim.mz, dtype=precision)

        for directory in procdirs:
            proc = int(directory[4:])
            procdim = read_dim(datadir, proc, down=down)
            if not quiet:
                #print "reading data from processor %i of %i ..." \ # Python 2
                      #% (proc, len(procdirs)) # Python 2
                print("reading data from processor {0} of {1} ...".format(proc, len(procdirs)))

            mxloc = procdim.mx
            myloc = procdim.my
            mzloc = procdim.mz

            #read data
            if down:
                griddat='grid_down.dat'
            else:
                griddat='grid.dat'
            filename = os.path.join(datadir, directory, griddat)
            infile = npfile(filename, endian=format)
            grid_raw = infile.fort_read(precision)
            dx, dy, dz = tuple(infile.fort_read(precision))
            Lx, Ly, Lz = tuple(infile.fort_read(precision))
            dx_1_raw = infile.fort_read(precision)
            dx_tilde_raw = infile.fort_read(precision)
            infile.close()

            #reshape
            t = grid_raw[0]
            x_loc = grid_raw[1:mxloc+1]
            y_loc = grid_raw[mxloc+1:mxloc+myloc+1]
            z_loc = grid_raw[mxloc+myloc+1:mxloc+myloc+mzloc+1]
            dx_1_loc = dx_1_raw[0:mxloc]
            dy_1_loc = dx_1_raw[mxloc:mxloc+myloc]
            dz_1_loc = dx_1_raw[mxloc+myloc:mxloc+myloc+mzloc]
            dx_tilde_loc = dx_tilde_raw[0:mxloc]
            dy_tilde_loc = dx_tilde_raw[mxloc:mxloc+myloc]
            dz_tilde_loc = dx_tilde_raw[mxloc+myloc:mxloc+myloc+mzloc]

            if len(procdirs) >1:
                if procdim.ipx == 0:
                    i0x = 0
                    i1x = i0x+procdim.mx
                    i0xloc = 0
                    i1xloc = procdim.mx
                else:
                    i0x = procdim.ipx*procdim.nx+procdim.nghostx
                    i1x = i0x+procdim.mx-procdim.nghostx
                    i0xloc = procdim.nghostx
                    i1xloc = procdim.mx

                if procdim.ipy == 0:
                    i0y = 0
                    i1y = i0y+procdim.my
                    i0yloc = 0
                    i1yloc = procdim.my
                else:
                    i0y = procdim.ipy*procdim.ny+procdim.nghosty
                    i1y = i0y+procdim.my-procdim.nghosty
                    i0yloc = procdim.nghosty
                    i1yloc = procdim.my

                if procdim.ipz == 0:
                    i0z = 0
                    i1z = i0z+procdim.mz
                    i0zloc = 0
                    i1zloc = procdim.mz
                else:
                    i0z = procdim.ipz*procdim.nz+procdim.nghostz
                    i1z = i0z+procdim.mz-procdim.nghostz
                    i0zloc = procdim.nghostz
                    i1zloc = procdim.mz

                x[i0x:i1x] = x_loc[i0xloc:i1xloc]
                y[i0y:i1y] = y_loc[i0yloc:i1yloc]
                z[i0z:i1z] = z_loc[i0zloc:i1zloc]
                dx_1[i0x:i1x] = dx_1_loc[i0xloc:i1xloc]
                dy_1[i0y:i1y] = dy_1_loc[i0yloc:i1yloc]
                dz_1[i0z:i1z] = dz_1_loc[i0zloc:i1zloc]
                dx_tilde[i0x:i1x] = dx_tilde_loc[i0xloc:i1xloc]
                dy_tilde[i0y:i1y] = dy_tilde_loc[i0yloc:i1yloc]
                dz_tilde[i0z:i1z] = dz_tilde_loc[i0zloc:i1zloc]

            else:
                x = x_loc
                y = y_loc
                z = z_loc
                dx_1 = dx_1_loc
                dy_1 = dy_1_loc
                dz_1 = dz_1_loc
                dx_tilde = dx_tilde_loc
                dy_tilde = dy_tilde_loc
                dz_tilde = dz_tilde_loc
            #endif MPI run

        # end directories loop
        if trim:
            self.x = x[dim.l1:dim.l2+1]
            self.y = y[dim.m1:dim.m2+1]
            self.z = z[dim.n1:dim.n2+1]
            self.dx_1 = dx_1[dim.l1:dim.l2+1]
            self.dy_1 = dy_1[dim.m1:dim.m2+1]
            self.dx_1 = dz_1[dim.n1:dim.n2+1]
            self.dx_tilde = dx_tilde[dim.l1:dim.l2+1]
            self.dy_tilde = dy_tilde[dim.m1:dim.m2+1]
            self.dx_tilde = dz_tilde[dim.n1:dim.n2+1]
        else:
            self.x = x
            self.y = y
            self.z = z
            self.dx_1 = dx_1
            self.dy_1 = dy_1
            self.dx_1 = dz_1
            self.dx_tilde = dx_tilde
            self.dy_tilde = dy_tilde
            self.dx_tilde = dz_tilde

        self.t = t
        self.dx = dx
        self.dy = dy
        self.dz = dz
        self.Lx = Lx
        self.Ly = Ly
        self.Lz = Lz
Пример #47
0
def animate_slices_multi(field='uu1', datadir1='data/', datadir2='data/', proc=-1, extension='xz',
                   format='native', tmin=0., tmax=1.e38, wait=0.,
                   amin=0., amax=1., transform='', oldfile=False,
                   makemovie=False):
    """
    read 2D slice files and assemble an animation.
    version that does this for two different runs, neat for comparrison
    runs must have same precision and sizes

    Options:

     field --- which variable to slice
     datadir1 --- path to data directory of first simulation
     datadir2 --- path to data directory of second imulation
     proc --- an integer giving the processor to read a slice from
     extension --- which plane of xy,xz,yz,Xz. for 2D this should be overwritten.
     format --- endian. one of little, big, or native (default)
     tmin --- start time
     tmax --- end time
     amin --- minimum value for image scaling
     amax --- maximum value for image scaling
     transform --- insert arbitrary numerical code to modify the slice
     wait --- pause in seconds between animation slices
    """

    import pylab as plt

    datadir1 = os.path.expanduser(datadir1)
    if proc < 0:
        filename1 = join(datadir1, 'slice_' + field + '.' + extension)
    else:
        filename1 = join(datadir1, 'proc' + str(proc),
                        'slice_' + field + '.' + extension)

    datadir2 = os.path.expanduser(datadir2)
    if proc < 0:
        filename2 = join(datadir2, 'slice_' + field + '.' + extension)
    else:
        filename2 = join(datadir2, 'proc' + str(proc),
                        'slice_' + field + '.' + extension)

    # Read the global dimensions.
    dim = read_dim(datadir1, proc)
    if dim.precision == 'D':
        precision = 'd'
    else:
        precision = 'f'

    # Set up slice plane.
    if extension == 'xy' or extension == 'Xy':
        hsize = dim.nx
        vsize = dim.ny
    if extension == 'xz':
        hsize = dim.nx
        vsize = dim.nz
    if extension == 'yz':
        hsize = dim.ny
        vsize = dim.nz
    plane1 = np.zeros((vsize, hsize), dtype=precision)
    plane2 = np.zeros((vsize, hsize), dtype=precision)

    infile1 = npfile(filename1, endian=format)
    infile2 = npfile(filename2, endian=format)

    #ax = plt.axes()
    #ax.set_xlabel('')
    #ax.set_ylabel('')
    #ax.set_ylim
    #ax.get_xaxis().set_visible(False)
    #ax.get_yaxis().set_visible(False)

    fig, (ax1,ax2) = plt.subplots(1,2)
    #fig.suptitle('Re = 400', fontsize=20)
    image1 = ax1.imshow(plane1, vmin=amin, vmax=amax)
    image2 = ax2.imshow(plane2, vmin=amin, vmax=amax)
    ax1.set_xlabel('')
    ax1.set_ylabel('')
    ax1.get_xaxis().set_visible(False)
    ax1.get_yaxis().set_visible(False)
    ax2.set_xlabel('')
    ax2.set_ylabel('')
    ax2.get_xaxis().set_visible(False)
    ax2.get_yaxis().set_visible(False)

    # Get the figure manager for real-time image display.
    manager = plt.get_current_fig_manager()
    manager.show()

    ifirst = True
    islice = 0
    files = []

    while True:
        try:
            raw_data1 = infile1.fort_read(precision)
            raw_data2 = infile2.fort_read(precision)
        except ValueError:
            break
        except TypeError:
            break

        if oldfile:
            t = raw_data1[-1]
            plane1 = raw_data1[:-1].reshape(vsize, hsize)
            plane2 = raw_data2[:-1].reshape(vsize, hsize)
        else:
            t = raw_data1[-2]
            plane1 = raw_data1[:-2].reshape(vsize, hsize)
            plane2 = raw_data2[:-2].reshape(vsize, hsize)

        if transform:
            exec('plane = plane' + transform)

        if t > tmin and t < tmax:
            title = 't = %11.3e' % t
            #fig.set_title(title)
            image1.set_data(plane1)
            image2.set_data(plane2)
            manager.canvas.draw()

            if ifirst:
                #print "----islice----------t---------min-------max-------delta" # Python 2
                print("----islice----------t---------min-------max-------delta")
            #print "%10i %10.3e %10.3e %10.3e %10.3e" \ # Python 2
                #% (islice, t, plane.min(), plane.max(), plane.max() - plane.min()) # Python 2
            print("{0:10} {1:10.3e} {2:10.3e} {3:10.3e} {4:10.3e}".format(islice, t, plane1.min(), plane1.max(), plane1.max() - plane1.min()))

            if(makemovie):
                fname = '_tmp%03d.png' % islice
                fig.savefig(fname)
                files.append(fname)

            ifirst = False
            islice += 1

            sleep(wait)

    infile1.close()
    infile2.close()

    if(makemovie):
        print('Making movie animation.mpg - this make take a while')
        # SC: Not all systems use mencoder. Need to change this into ffmpeg.
        os.system("mencoder 'mf://_tmp*.png' -mf type=png:fps=24 -ovc lavc -lavcopts vcodec=wmv2 -oac copy -o animation.mpg")
        os.system("rm _tmp*.png")
def particles_to_density(xxp,yyp,zzp,x,y,z):
    dim = read_dim()
    if dim.precision == 'D':
        precision = 'd'
    else:
        precision = 'f'
    nnp = np.zeros([dim.mz,dim.my,dim.mx])
                
    npar=len(xxp)
    
    for k in range(npar):

        xp=xxp[k]
        yp=yyp[k]
        zp=zzp[k]

        ix0=find_index_bisect(xp,x)
        iy0=find_index_bisect(yp,y)
        iz0=find_index_bisect(zp,z)

        ixx0=ix0-1
        ixx1=ix0+1

        iyy0=iy0-1
        iyy1=iy0+1

        izz0=iz0-1
        izz1=iz0+1

        if (dim.nx > 1):
            dx=x[ix0]-x[ixx0]
        else:
            dx=1.0

        if (dim.ny > 1):
            dy=y[iy0]-y[iyy0]
        else:
            dy=1.0

        if (dim.nz > 1):
            dz=z[iz0]-z[izz0]
        else:
            dz=1.0

        dx_1=1.0/dx
        dy_1=1.0/dy
        dz_1=1.0/dz
#
        dx_2=1.0/dx**2
        dy_2=1.0/dy**2
        dz_2=1.0/dz**2
    
#if (not ghost) then begin
#  mx=nx+6 & l1=3 & l2=l1+nx-1
#  x2=fltarr(mx)*one
#  x2[l1:l2]=x
#  for l=l1-1,   0,-1 do x2[l]=x2[l+1]-dx
#  for l=l2+1,mx-1,+1 do x2[l]=x2[l-1]+dx
#  x=x2
                                                                                         
#  my=ny+6 & m1=3 & m2=m1+ny-1
#  y2=fltarr(my)*one
#  y2[m1:m2]=y
#  for m=m1-1,   0,-1 do y2[m]=y2[m+1]-dy
#  for m=m2+1,my-1,+1 do y2[m]=y2[m-1]+dy
#  y=y2
#;                                                                                         
#    if (dim.nz == 1): 
#        for n in np.arange(3):
#            nn=n+1
#            z[dim.n1-nn]=z[dim.n1]-nn*dz
#            z[dim.n2+nn]=z[dim.n2]+nn*dz

        for ixx in np.arange(ixx0,ixx1+1):
            for iyy in np.arange(iyy0,iyy1+1):
                for izz in np.arange(izz0,izz1+1):

                    if ( ((ixx-ix0) == -1) or ((ixx-ix0) == +1) ):
                        weight_x = 1.125 - 1.5*abs(xp-x[ixx])  *dx_1 + 0.5*abs(xp-x[ixx])**2*dx_2
                    else:
                        if (dim.nx != 1): weight_x = 0.75 - (xp-x[ixx])**2*dx_2

                    if ( ((iyy-iy0) == -1) or ((iyy-iy0) == +1) ):
                        weight_y = 1.125 - 1.5*abs(yp-y[iyy])  *dy_1 + 0.5*abs(yp-y[iyy])**2*dy_2
                    else:
                        if (dim.ny != 1): weight_y = 0.75 - (yp-y[iyy])**2*dy_2

                    if ( ((izz-iz0) == -1) or ((izz-iz0) == +1) ):
                        weight_z = 1.125 - 1.5*abs(zp-z[izz])  *dz_1 + 0.5*abs(zp-z[izz])**2*dz_2
                    else:
                        if (dim.nz != 1): weight_z = 0.75 - (zp-z[izz])**2*dz_2

                    weight=1.0
                    if (dim.nx != 1): weight=weight*weight_x
                    if (dim.ny != 1): weight=weight*weight_y
                    if (dim.nz != 1): weight=weight*weight_z
#                                                                                                                                                                                                         
                    nnp[izz,iyy,ixx]=nnp[izz,iyy,ixx] + weight

    return nnp
Пример #49
0
def animate_slices(field='uu1', datadir='data/', proc=-1, extension='xz',
                   format='native', tmin=0., tmax=1.e38, wait=0.,
                   amin=0., amax=1., transform='', oldfile=False):
    """
    read 2D slice files and assemble an animation.

    Options:

     field --- which variable to slice
     datadir --- path to data directory
     proc --- an integer giving the processor to read a slice from
     extension --- which plane of xy,xz,yz,Xz. for 2D this should be overwritten.
     format --- endian. one of little, big, or native (default)
     tmin --- start time
     tmax --- end time
     amin --- minimum value for image scaling
     amax --- maximum value for image scaling
     transform --- insert arbitrary numerical code to modify the slice
     wait --- pause in seconds between animation slices
    """

    import pylab as plt

    datadir = os.path.expanduser(datadir)
    if proc < 0:
        filename = join(datadir, 'slice_' + field + '.' + extension)
    else:
        filename = join(datadir, 'proc' + str(proc),
                        'slice_' + field + '.' + extension)

    # Read the global dimensions.
    dim = read_dim(datadir, proc)
    if dim.precision == 'D':
        precision = 'd'
    else:
        precision = 'f'

    # Set up slice plane.
    if extension == 'xy' or extension == 'Xy':
        hsize = dim.nx
        vsize = dim.ny
    if extension == 'xz':
        hsize = dim.nx
        vsize = dim.nz
    if extension == 'yz':
        hsize = dim.ny
        vsize = dim.nz
    plane = np.zeros((vsize, hsize), dtype=precision)

    infile = npfile(filename, endian=format)

    ax = plt.axes()
    ax.set_xlabel('x')
    ax.set_ylabel('y')
    ax.set_ylim

    image = plt.imshow(plane, vmin=amin, vmax=amax)

    # Get the figure manager for real-time image display.
    manager = plt.get_current_fig_manager()
    manager.show()

    ifirst = True
    islice = 0
    while True:
        try:
            raw_data = infile.fort_read(precision)
        except ValueError:
            break
        except TypeError:
            break

        if oldfile:
            t = raw_data[-1]
            plane = raw_data[:-1].reshape(vsize, hsize)
        else:
            t = raw_data[-2]
            plane = raw_data[:-2].reshape(vsize, hsize)

        if transform:
            exec('plane = plane' + transform)

        if t > tmin and t < tmax:
            title = 't = %11.3e' % t
            ax.set_title(title)
            image.set_data(plane)
            manager.canvas.draw()

            if ifirst:
                #print "----islice----------t---------min-------max-------delta" # Python 2
                print("----islice----------t---------min-------max-------delta")
            #print "%10i %10.3e %10.3e %10.3e %10.3e" \ # Python 2
                #% (islice, t, plane.min(), plane.max(), plane.max() - plane.min()) # Python 2
            print("{0:10} {1:10.3e} {2:10.3e} {3:10.3e} {4:10.3e}".format(islice, t, plane.min(), plane.max(), plane.max() - plane.min()))

            ifirst = False
            islice += 1

            sleep(wait)

    infile.close()
Пример #50
0
def make_movie_crossflow(field='uu1', datadir='data/', proc=-1, extension='yz',
               format='native', tmin=0., tmax=1.e38, amin=0., amax=1.,
               transform='', oldfile=False):
    """
    read 2D slice files and assemble an animation in a mpg movie.

    Quickly written from the example at
    http://matplotlib.sourceforge.net/faq/howto_faq.html

    Options:

     field --- which variable to slice
     datadir --- path to data directory
     proc --- an integer giving the processor to read a slice from
     extension --- which plane of xy,xz,yz,Xz. for 2D this should be overwritten.
     format --- endian. one of little, big, or native (default)
     tmin --- start time
     tmax --- end time
     amin --- minimum value for image scaling
     amax --- maximum value for image scaling
     transform --- insert arbitrary numerical code to modify the slice
    """

    import pylab as plt
    import matplotlib.patches as patches

    datadir = os.path.expanduser(datadir)
    if proc < 0:
        filename = datadir + '/slice_' + field + '.' + extension
    else:
        filename = datadir + '/proc' + \
            str(proc) + '/slice_' + field + '.' + extension

    # Read the global dimensions.
    dim = read_dim(datadir, proc)
    if dim.precision == 'D':
        precision = 'd'
    else:
        precision = 'f'

    # Set up slice plane.
    if extension == 'xy' or extension == 'Xy':
        hsize = dim.nx
        vsize = dim.ny
    if extension == 'xz':
        hsize = dim.nx
        vsize = dim.nz
    if extension == 'yz':
        hsize = dim.ny
        vsize = dim.nz
    plane = np.zeros((vsize, hsize), dtype=precision)

    infile = npfile(filename, endian=format)

    files = []
    fig = plt.figure(figsize=(5, 10))
    ax = fig.add_subplot(111)
    ax.add_patch(patches.Rectangle(
            (220,0),
            40,
            320,
            color='gray'
        )
    )
#
#    ax.add_patch(patches.Rectangle(
#            (220,0),
#            80,
#            240,
#            hatch='/'
#        )
#    )

    ifirst = True
    islice = 0
    while True:
        try:
            raw_data = infile.fort_read(precision)
        except ValueError:
            break
        except TypeError:
            break

        if oldfile:
            t = raw_data[-1]
            plane = raw_data[:-1].reshape(vsize, hsize)
        else:
            t = raw_data[-2]
            plane = raw_data[:-2].reshape(vsize, hsize)

        if transform:
            exec('plane = plane' + transform)

        if t > tmin and t < tmax:
            ax.cla()
            ax.imshow(plane, vmin=amin, vmax=amax)
            ax.add_patch(patches.Rectangle(
                    (220,0),
                    40,
                    320,
                    color='gray'
                )
            )
            fname = '_tmp%03d.png' % islice
            print('Saving frame' + fname)
            fig.savefig(fname)
            files.append(fname)
Пример #51
0
def animate_slices_multi(field='uu1', datadir1='data/', datadir2='data/', proc=-1, extension='xz',
                   format='native', tmin=0., tmax=1.e38, wait=0.,
                   amin=0., amax=1., transform='', oldfile=False,
                   makemovie=False):
    """
    read 2D slice files and assemble an animation.
    version that does this for two different runs, neat for comparrison
    runs must have same precision and sizes

    Options:

     field --- which variable to slice
     datadir1 --- path to data directory of first simulation
     datadir2 --- path to data directory of second imulation
     proc --- an integer giving the processor to read a slice from
     extension --- which plane of xy,xz,yz,Xz. for 2D this should be overwritten.
     format --- endian. one of little, big, or native (default)
     tmin --- start time
     tmax --- end time
     amin --- minimum value for image scaling
     amax --- maximum value for image scaling
     transform --- insert arbitrary numerical code to modify the slice
     wait --- pause in seconds between animation slices
    """

    import pylab as plt

    datadir1 = os.path.expanduser(datadir1)
    if proc < 0:
        filename1 = join(datadir1, 'slice_' + field + '.' + extension)
    else:
        filename1 = join(datadir1, 'proc' + str(proc),
                        'slice_' + field + '.' + extension)

    datadir2 = os.path.expanduser(datadir2)
    if proc < 0:
        filename2 = join(datadir2, 'slice_' + field + '.' + extension)
    else:
        filename2 = join(datadir2, 'proc' + str(proc),
                        'slice_' + field + '.' + extension)

    # Read the global dimensions.
    dim = read_dim(datadir1, proc)
    if dim.precision == 'D':
        precision = 'd'
    else:
        precision = 'f'

    # Set up slice plane.
    if extension == 'xy' or extension == 'Xy':
        hsize = dim.nx
        vsize = dim.ny
    if extension == 'xz':
        hsize = dim.nx
        vsize = dim.nz
    if extension == 'yz':
        hsize = dim.ny
        vsize = dim.nz
    plane1 = np.zeros((vsize, hsize), dtype=precision)
    plane2 = np.zeros((vsize, hsize), dtype=precision)

    infile1 = npfile(filename1, endian=format)
    infile2 = npfile(filename2, endian=format)

    #ax = plt.axes()
    #ax.set_xlabel('')
    #ax.set_ylabel('')
    #ax.set_ylim
    #ax.get_xaxis().set_visible(False)
    #ax.get_yaxis().set_visible(False)

    fig, (ax1,ax2) = plt.subplots(1,2)
    #fig.suptitle('Re = 400', fontsize=20)
    image1 = ax1.imshow(plane1, vmin=amin, vmax=amax)
    image2 = ax2.imshow(plane2, vmin=amin, vmax=amax)
    ax1.set_xlabel('')
    ax1.set_ylabel('')
    ax1.get_xaxis().set_visible(False)
    ax1.get_yaxis().set_visible(False)
    ax2.set_xlabel('')
    ax2.set_ylabel('')
    ax2.get_xaxis().set_visible(False)
    ax2.get_yaxis().set_visible(False)

    # Get the figure manager for real-time image display.
    manager = plt.get_current_fig_manager()
    manager.show()

    ifirst = True
    islice = 0
    files = []

    while True:
        try:
            raw_data1 = infile1.fort_read(precision)
            raw_data2 = infile2.fort_read(precision)
        except ValueError:
            break
        except TypeError:
            break

        if oldfile:
            t = raw_data1[-1]
            plane1 = raw_data1[:-1].reshape(vsize, hsize)
            plane2 = raw_data2[:-1].reshape(vsize, hsize)
        else:
            t = raw_data1[-2]
            plane1 = raw_data1[:-2].reshape(vsize, hsize)
            plane2 = raw_data2[:-2].reshape(vsize, hsize)

        if transform:
            exec('plane = plane' + transform)

        if t > tmin and t < tmax:
            title = 't = %11.3e' % t
            #fig.set_title(title)
            image1.set_data(plane1)
            image2.set_data(plane2)
            manager.canvas.draw()

            if ifirst:
                #print "----islice----------t---------min-------max-------delta" # Python 2
                print("----islice----------t---------min-------max-------delta")
            #print "%10i %10.3e %10.3e %10.3e %10.3e" \ # Python 2
                #% (islice, t, plane.min(), plane.max(), plane.max() - plane.min()) # Python 2
            print("{0:10} {1:10.3e} {2:10.3e} {3:10.3e} {4:10.3e}".format(islice, t, plane1.min(), plane1.max(), plane1.max() - plane1.min()))

            if(makemovie):
                fname = '_tmp%03d.png' % islice
                fig.savefig(fname)
                files.append(fname)

            ifirst = False
            islice += 1

            sleep(wait)

    infile1.close()
    infile2.close()

    if(makemovie):
        print('Making movie animation.mpg - this make take a while')
        # SC: Not all systems use mencoder. Need to change this into ffmpeg.
        os.system("mencoder 'mf://_tmp*.png' -mf type=png:fps=24 -ovc lavc -lavcopts vcodec=wmv2 -oac copy -o animation.mpg")
        os.system("rm _tmp*.png")
Пример #52
0
def read_zaver(datadir='data/',format='native',point=(-1,-1),proc=-1):

    """read 2D zaverage.dat file. If proc < 0, then load all data
    and assemble. Otherwise, load VAR file from specified processor.

    point -- an array of 2-tuples (iy,ix) representing discrete
             points to be returned in an output array (not implemented yet)
    
    proc -- Read data from proc if proc > -1, otherwise load all and assemble.
    
    returns a tuple (zavg, t), zavg has shape (noutputs,nvars,ny,nx)

    """
    datadir = os.path.expanduser(datadir)
    datatopdir = re.sub('data\/*$','',datadir)

    # which variables are averaged?
    infile = open(datatopdir+'zaver.in')
    variables = [line.strip() for line in infile.readlines()]
    infile.close()

    # global dim
    dim = read_dim(datadir, proc=proc)
    if dim.precision == 'D':
        precision = 'd'
    else:
        precision = 'f'

    if proc < 0:
        procdirs = list(filter(lambda s:s.startswith('proc'),
                                 os.listdir(datadir)))
    else:
        procdirs = ['proc'+str(proc)]
            
    for directory in procdirs:
        ntime = 0
        # local dimensions
        core = int(directory[4:]) # SC: needed to rename proc to core to keep function argument
        procdim = read_dim(datadir,core)
        nxloc = procdim.nx
        nyloc = procdim.ny
        zaver_local = []
        zaver_loc_shape = (len(variables),procdim.ny,procdim.nx)

        #read data
        filename = os.path.join(datadir,directory,'zaverages.dat')
        try:
            infile = npfile(filename,endian=format)
            t = N.zeros(1,dtype=precision)
        except:
            continue

        while 1:
            try:
                raw_data = infile.fort_read(precision,shape=1)
            except ValueError:
                break
            except TypeError:
                break

            t = N.concatenate((t,raw_data))

            try:
                raw_data = infile.fort_read(precision,shape=zaver_loc_shape)
            except ValueError:
                #print "Problem: seems there is a t without corresponding data. zaverages.dat may be corrupted" # Python 2                
                print("Problem: seems there is a t without corresponding data. zaverages.dat may be corrupted")
                break
            except TypeError:
                #print "Problem: seems there is a t without corresponding data. zaverages.dat may be corrupted" # Python
                print("Problem: seems there is a t without corresponding data. zaverages.dat may be corrupted")
                break
            zaver_local.append(raw_data)
            ntime += 1
        
        try:
            zaver
            pass
        except:
            zaver = N.zeros((ntime,len(variables),dim.ny,dim.nx))
        
        if (proc < 0):
            # append to the global zaver
            for i in range(ntime):
                zaver[i,:,procdim.ipy*procdim.ny:(procdim.ipy+1)*procdim.ny,
                    procdim.ipx*procdim.nx:(procdim.ipx+1)*procdim.nx] = zaver_local[i]
        else:
            for i in range(ntime):
                zaver[i,:,:,:] = zaver_local[i]
        
    return zaver,t[1:]
Пример #53
0
def animate_slices(field='uu1', datadir='data/', proc=-1, extension='xz',
                   format='native', tmin=0., tmax=1.e38, wait=0.,
                   amin=0., amax=1., transform='', oldfile=False):
    """
    read 2D slice files and assemble an animation.

    Options:

     field --- which variable to slice
     datadir --- path to data directory
     proc --- an integer giving the processor to read a slice from
     extension --- which plane of xy,xz,yz,Xz. for 2D this should be overwritten.
     format --- endian. one of little, big, or native (default)
     tmin --- start time
     tmax --- end time
     amin --- minimum value for image scaling
     amax --- maximum value for image scaling
     transform --- insert arbitrary numerical code to modify the slice
     wait --- pause in seconds between animation slices
    """

    import pylab as plt

    datadir = os.path.expanduser(datadir)
    if proc < 0:
        filename = join(datadir, 'slice_' + field + '.' + extension)
    else:
        filename = join(datadir, 'proc' + str(proc),
                        'slice_' + field + '.' + extension)

    # Read the global dimensions.
    dim = read_dim(datadir, proc)
    if dim.precision == 'D':
        precision = 'd'
    else:
        precision = 'f'

    # Set up slice plane.
    if extension == 'xy' or extension == 'Xy':
        hsize = dim.nx
        vsize = dim.ny
    if extension == 'xz':
        hsize = dim.nx
        vsize = dim.nz
    if extension == 'yz':
        hsize = dim.ny
        vsize = dim.nz
    plane = np.zeros((vsize, hsize), dtype=precision)

    infile = npfile(filename, endian=format)

    ax = plt.axes()
    ax.set_xlabel('x')
    ax.set_ylabel('y')
    ax.set_ylim

    image = plt.imshow(plane, vmin=amin, vmax=amax)

    # Get the figure manager for real-time image display.
    manager = plt.get_current_fig_manager()
    manager.show()

    ifirst = True
    islice = 0
    while True:
        try:
            raw_data = infile.fort_read(precision)
        except ValueError:
            break
        except TypeError:
            break

        if oldfile:
            t = raw_data[-1]
            plane = raw_data[:-1].reshape(vsize, hsize)
        else:
            t = raw_data[-2]
            plane = raw_data[:-2].reshape(vsize, hsize)

        if transform:
            exec('plane = plane' + transform)

        if t > tmin and t < tmax:
            title = 't = %11.3e' % t
            ax.set_title(title)
            image.set_data(plane)
            manager.canvas.draw()

            if ifirst:
                #print "----islice----------t---------min-------max-------delta" # Python 2
                print("----islice----------t---------min-------max-------delta")
            #print "%10i %10.3e %10.3e %10.3e %10.3e" \ # Python 2
                #% (islice, t, plane.min(), plane.max(), plane.max() - plane.min()) # Python 2
            print("{0:10} {1:10.3e} {2:10.3e} {3:10.3e} {4:10.3e}".format(islice, t, plane.min(), plane.max(), plane.max() - plane.min()))

            ifirst = False
            islice += 1

            sleep(wait)

    infile.close()