Пример #1
0
def two_qubit_gate(p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13,
                   p14, wires):
    # This is a parametrization of an arbitrary two-qubit gate
    # that is called the Cartan decomposition.
    one_qubit_gate(p0, p1, p2, wires[0])
    one_qubit_gate(p3, p4, p5, wires[1])

    # Rxx
    qml.Hadamard(wires=[wires[0]])
    qml.Hadamard(wires=[wires[1]])
    qml.MultiRZ(p6, wires=wires)
    qml.Hadamard(wires=[wires[0]])
    qml.Hadamard(wires=[wires[1]])

    # Ryy
    qml.inv(qml.S(wires=[wires[0]]))
    qml.Hadamard(wires=[wires[0]])
    qml.inv(qml.S(wires=[wires[1]]))
    qml.Hadamard(wires=[wires[1]])
    qml.MultiRZ(p7, wires=wires)
    qml.Hadamard(wires=[wires[0]])
    qml.S(wires=[wires[0]])
    qml.Hadamard(wires=[wires[1]])
    qml.S(wires=[wires[1]])

    # Rzz
    qml.MultiRZ(p8, wires=wires)

    one_qubit_gate(p9, p10, p11, wires[0])
    one_qubit_gate(p12, p13, p14, wires[1])
Пример #2
0
def qaoa_ising_hamiltonian(weights, wires, local_fields):
    """Implements the Ising-like Hamiltonian of the QAOA embedding.

    Args:
        weights (tensor_like): array of weights for one layer
        wires (Wires): qubit indices that the template acts on
        local_fields (str): gate implementing the local field
    """

    if len(wires) == 1:
        local_fields(weights[0], wires=wires)

    elif len(wires) == 2:
        # deviation for 2 wires: we do not connect last to first qubit
        # with the entangling gates
        qml.MultiRZ(weights[0], wires=wires.subset([0, 1]))
        local_fields(weights[1], wires=wires[0:1])
        local_fields(weights[2], wires=wires[1:2])

    else:
        for i in range(len(wires)):
            qml.MultiRZ(weights[i],
                        wires=wires.subset([i, i + 1], periodic_boundary=True))
        for i in range(len(wires)):
            local_fields(weights[len(wires) + i], wires=wires[i])
Пример #3
0
def circuit_decomposed(features):
    qml.Hadamard(wires=0)
    qml.RZ(features[0], wires=0)
    qml.Hadamard(wires=1)
    qml.RZ(features[1], wires=1)
    qml.MultiRZ(features[0] * features[1], wires=[0, 1])
    return qml.expval(qml.PauliZ(0))
Пример #4
0
def circuit_decomposed(features, weights):
    qml.RX(features[0], wires=0)
    qml.RX(features[1], wires=1)
    qml.MultiRZ(weights[0, 0], wires=[0, 1])
    qml.RY(weights[0, 1], wires=0)
    qml.RY(weights[0, 2], wires=1)
    qml.RX(features[0], wires=0)
    qml.RX(features[1], wires=1)
    return qml.expval(qml.PauliZ(0))
Пример #5
0
def op(op_name):
    ops_list = {
        "RX": qml.RX(0.123, wires=0),
        "RY": qml.RY(1.434, wires=0),
        "RZ": qml.RZ(2.774, wires=0),
        "S": qml.S(wires=0),
        "SX": qml.SX(wires=0),
        "T": qml.T(wires=0),
        "CNOT": qml.CNOT(wires=[0, 1]),
        "CZ": qml.CZ(wires=[0, 1]),
        "CY": qml.CY(wires=[0, 1]),
        "SWAP": qml.SWAP(wires=[0, 1]),
        "ISWAP": qml.ISWAP(wires=[0, 1]),
        "SISWAP": qml.SISWAP(wires=[0, 1]),
        "SQISW": qml.SQISW(wires=[0, 1]),
        "CSWAP": qml.CSWAP(wires=[0, 1, 2]),
        "PauliRot": qml.PauliRot(0.123, "Y", wires=0),
        "IsingXX": qml.IsingXX(0.123, wires=[0, 1]),
        "IsingXY": qml.IsingXY(0.123, wires=[0, 1]),
        "IsingYY": qml.IsingYY(0.123, wires=[0, 1]),
        "IsingZZ": qml.IsingZZ(0.123, wires=[0, 1]),
        "Identity": qml.Identity(wires=0),
        "Rot": qml.Rot(0.123, 0.456, 0.789, wires=0),
        "Toffoli": qml.Toffoli(wires=[0, 1, 2]),
        "PhaseShift": qml.PhaseShift(2.133, wires=0),
        "ControlledPhaseShift": qml.ControlledPhaseShift(1.777, wires=[0, 2]),
        "CPhase": qml.CPhase(1.777, wires=[0, 2]),
        "MultiRZ": qml.MultiRZ(0.112, wires=[1, 2, 3]),
        "CRX": qml.CRX(0.836, wires=[2, 3]),
        "CRY": qml.CRY(0.721, wires=[2, 3]),
        "CRZ": qml.CRZ(0.554, wires=[2, 3]),
        "Hadamard": qml.Hadamard(wires=0),
        "PauliX": qml.PauliX(wires=0),
        "PauliY": qml.PauliY(wires=0),
        "PauliZ": qml.PauliZ(wires=0),
        "CRot": qml.CRot(0.123, 0.456, 0.789, wires=[0, 1]),
        "DiagonalQubitUnitary": qml.DiagonalQubitUnitary(np.array([1.0, 1.0j]), wires=1),
        "ControlledQubitUnitary": qml.ControlledQubitUnitary(
            np.eye(2) * 1j, wires=[0], control_wires=[2]
        ),
        "MultiControlledX": qml.MultiControlledX(wires=(0, 1, 2), control_values="01"),
        "SingleExcitation": qml.SingleExcitation(0.123, wires=[0, 3]),
        "SingleExcitationPlus": qml.SingleExcitationPlus(0.123, wires=[0, 3]),
        "SingleExcitationMinus": qml.SingleExcitationMinus(0.123, wires=[0, 3]),
        "DoubleExcitation": qml.DoubleExcitation(0.123, wires=[0, 1, 2, 3]),
        "DoubleExcitationPlus": qml.DoubleExcitationPlus(0.123, wires=[0, 1, 2, 3]),
        "DoubleExcitationMinus": qml.DoubleExcitationMinus(0.123, wires=[0, 1, 2, 3]),
        "QFT": qml.QFT(wires=0),
        "QubitSum": qml.QubitSum(wires=[0, 1, 2]),
        "QubitCarry": qml.QubitCarry(wires=[0, 1, 2, 3]),
        "QubitUnitary": qml.QubitUnitary(np.eye(2) * 1j, wires=0),
    }
    return ops_list.get(op_name)
Пример #6
0
def qgrnn_layer(weights, bias, qubits, graph, trotter_step):

    # Applies a layer of RZZ gates (based on a graph)
    for i, edge in enumerate(graph.edges):
        qml.MultiRZ(2 * weights[i] * trotter_step, wires=(edge[0], edge[1]))

    # Applies a layer of RZ gates
    for i, qubit in enumerate(qubits):
        qml.RZ(2 * bias[i] * trotter_step, wires=qubit)

    # Applies a layer of RX gates
    for qubit in qubits:
        qml.RX(2 * trotter_step, wires=qubit)
Пример #7
0
def qgrnn_layer(param1, param2, qubits, graph, trotter_step):
    # With the quantum data defined, we are able to construct the QGRNN and learn the target Hamiltonian. Each of the
    # exponentiated Hamiltonians in the QGRNN ansatz are the ZZ, Z and X terms from the Ising Hamiltonian. This gives:

    # Applies a layer of RZZ gates (based on a graph)
    for count, i in enumerate(graph.edges):
        qml.MultiRZ(2 * param1[count] * trotter_step, wires=[i[0], i[1]])

    # Applies a layer of RZ gates
    for count, i in enumerate(qubits):
        qml.RZ(2 * param2[count] * trotter_step, wires=i)

    # Applies a layer of RX gates
    for i in qubits:
        qml.RX(2 * trotter_step, wires=i)
Пример #8
0
    def test_MultiRZ_decomposition_ZZ(self):
        """Test that the decomposition for a ZZ rotation is correct."""

        theta = 0.4
        op = qml.MultiRZ(theta, wires=[0, 1])
        decomp_ops = op.decomposition(theta, wires=[0, 1])

        assert decomp_ops[0].name == "CNOT"
        assert decomp_ops[0].wires == [1, 0]

        assert decomp_ops[1].name == "RZ"
        assert decomp_ops[1].wires == [0]
        assert decomp_ops[1].params[0] == theta

        assert decomp_ops[2].name == "CNOT"
        assert decomp_ops[2].wires == [1, 0]
Пример #9
0
    def test_multirz_generator(self, qubits, mocker):
        """Test that the generator of the MultiRZ gate is correct."""
        op = qml.MultiRZ(0.3, wires=range(qubits))
        gen = op.generator

        expected_gen = qml.PauliZ(wires=0)
        for i in range(1, qubits):
            expected_gen = expected_gen @ qml.PauliZ(wires=i)

        expected_gen_mat = expected_gen.matrix

        assert np.allclose(gen[0], expected_gen_mat)
        assert gen[1] == -0.5

        spy = mocker.spy(qml.utils, "pauli_eigs")

        op.generator
        spy.assert_not_called()
Пример #10
0
    def expand(self):

        features = self.parameters[0]

        with qml.tape.QuantumTape() as tape:

            for _ in range(self.n_repeats):

                for i in range(len(self.wires)):
                    qml.Hadamard(wires=self.wires[i])
                    qml.RZ(features[i], wires=self.wires[i])

                for wire_pair in self.pattern:
                    # get the position of the wire indices in the array
                    idx1, idx2 = self.wires.indices(wire_pair)
                    # apply product of two features as entangler
                    qml.MultiRZ(features[idx1] * features[idx2], wires=wire_pair)

        return tape
Пример #11
0
    def test_MultiRZ_decomposition_ZZZ(self):
        """Test that the decomposition for a ZZZ rotation is correct."""

        theta = 0.4
        op = qml.MultiRZ(theta, wires=[0, 2, 3])
        decomp_ops = op.decomposition(theta, wires=[0, 2, 3])

        assert decomp_ops[0].name == "CNOT"
        assert decomp_ops[0].wires == [3, 2]  #Wires([3, 2])

        assert decomp_ops[1].name == "CNOT"
        assert decomp_ops[1].wires == [2, 0]  #Wires([2, 0])

        assert decomp_ops[2].name == "RZ"
        assert decomp_ops[2].wires == [0]  #Wires([0])
        assert decomp_ops[2].data[0] == theta

        assert decomp_ops[3].name == "CNOT"
        assert decomp_ops[3].wires == [2, 0]  #Wires([2, 0])

        assert decomp_ops[4].name == "CNOT"
        assert decomp_ops[4].wires == [3, 2]  #Wires([3, 2])
Пример #12
0
def circuit_ansatz(params, wires):
    """Circuit ansatz containing all the parametrized gates"""
    qml.QubitStateVector(unitary_group.rvs(2**4, random_state=0)[0],
                         wires=wires)
    qml.RX(params[0], wires=wires[0])
    qml.RY(params[1], wires=wires[1])
    qml.RX(params[2], wires=wires[2]).inv()
    qml.RZ(params[0], wires=wires[3])
    qml.CRX(params[3], wires=[wires[3], wires[0]])
    qml.PhaseShift(params[4], wires=wires[2])
    qml.CRY(params[5], wires=[wires[2], wires[1]])
    qml.CRZ(params[5], wires=[wires[0], wires[3]]).inv()
    qml.PhaseShift(params[6], wires=wires[0]).inv()
    qml.Rot(params[6], params[7], params[8], wires=wires[0])
    # #     qml.Rot(params[8], params[8], params[9], wires=wires[1]).inv()
    qml.MultiRZ(params[11], wires=[wires[0], wires[1]])
    # #     qml.PauliRot(params[12], "XXYZ", wires=[wires[0], wires[1], wires[2], wires[3]])
    qml.CPhase(params[12], wires=[wires[3], wires[2]])
    qml.IsingXX(params[13], wires=[wires[1], wires[0]])
    qml.IsingXY(params[14], wires=[wires[3], wires[2]])
    qml.IsingYY(params[14], wires=[wires[3], wires[2]])
    qml.IsingZZ(params[14], wires=[wires[2], wires[1]])
    qml.U1(params[15], wires=wires[0])
    qml.U2(params[16], params[17], wires=wires[0])
    qml.U3(params[18], params[19], params[20], wires=wires[1])
    # #     qml.CRot(params[21], params[22], params[23], wires=[wires[1], wires[2]]).inv()  # expected tofail
    qml.SingleExcitation(params[24], wires=[wires[2], wires[0]])
    qml.DoubleExcitation(params[25],
                         wires=[wires[2], wires[0], wires[1], wires[3]])
    qml.SingleExcitationPlus(params[26], wires=[wires[0], wires[2]])
    qml.SingleExcitationMinus(params[27], wires=[wires[0], wires[2]])
    qml.DoubleExcitationPlus(params[27],
                             wires=[wires[2], wires[0], wires[1], wires[3]])
    qml.DoubleExcitationMinus(params[27],
                              wires=[wires[2], wires[0], wires[1], wires[3]])
    qml.RX(params[28], wires=wires[0])
    qml.RX(params[29], wires=wires[1])
class TestRepresentationResolver:
    """Test the RepresentationResolver class."""
    @pytest.mark.parametrize(
        "list,element,index,list_after",
        [
            ([1, 2, 3], 2, 1, [1, 2, 3]),
            ([1, 2, 2, 3], 2, 1, [1, 2, 2, 3]),
            ([1, 2, 3], 4, 3, [1, 2, 3, 4]),
        ],
    )
    def test_index_of_array_or_append(self, list, element, index, list_after):
        """Test the method index_of_array_or_append."""

        assert RepresentationResolver.index_of_array_or_append(element,
                                                               list) == index
        assert list == list_after

    @pytest.mark.parametrize(
        "par,expected",
        [
            (3, "3"),
            (5.236422, "5.24"),
        ],
    )
    def test_single_parameter_representation(self,
                                             unicode_representation_resolver,
                                             par, expected):
        """Test that single parameters are properly resolved."""
        assert unicode_representation_resolver.single_parameter_representation(
            par) == expected

    @pytest.mark.parametrize(
        "op,wire,target",
        [
            (qml.PauliX(wires=[1]), 1, "X"),
            (qml.CNOT(wires=[0, 1]), 1, "X"),
            (qml.CNOT(wires=[0, 1]), 0, "C"),
            (qml.Toffoli(wires=[0, 2, 1]), 1, "X"),
            (qml.Toffoli(wires=[0, 2, 1]), 0, "C"),
            (qml.Toffoli(wires=[0, 2, 1]), 2, "C"),
            (qml.CSWAP(wires=[0, 2, 1]), 1, "SWAP"),
            (qml.CSWAP(wires=[0, 2, 1]), 2, "SWAP"),
            (qml.CSWAP(wires=[0, 2, 1]), 0, "C"),
            (qml.PauliY(wires=[1]), 1, "Y"),
            (qml.PauliZ(wires=[1]), 1, "Z"),
            (qml.CZ(wires=[0, 1]), 1, "Z"),
            (qml.CZ(wires=[0, 1]), 0, "C"),
            (qml.Identity(wires=[1]), 1, "I"),
            (qml.Hadamard(wires=[1]), 1, "H"),
            (qml.PauliRot(3.14, "XX", wires=[0, 1]), 1, "RX(3.14)"),
            (qml.PauliRot(3.14, "YZ", wires=[0, 1]), 1, "RZ(3.14)"),
            (qml.PauliRot(3.14, "IXYZI", wires=[0, 1, 2, 3, 4
                                                ]), 0, "RI(3.14)"),
            (qml.PauliRot(3.14, "IXYZI", wires=[0, 1, 2, 3, 4
                                                ]), 1, "RX(3.14)"),
            (qml.PauliRot(3.14, "IXYZI", wires=[0, 1, 2, 3, 4
                                                ]), 2, "RY(3.14)"),
            (qml.PauliRot(3.14, "IXYZI", wires=[0, 1, 2, 3, 4
                                                ]), 3, "RZ(3.14)"),
            (qml.PauliRot(3.14, "IXYZI", wires=[0, 1, 2, 3, 4
                                                ]), 4, "RI(3.14)"),
            (qml.MultiRZ(3.14, wires=[0, 1]), 0, "RZ(3.14)"),
            (qml.MultiRZ(3.14, wires=[0, 1]), 1, "RZ(3.14)"),
            (qml.CRX(3.14, wires=[0, 1]), 1, "RX(3.14)"),
            (qml.CRX(3.14, wires=[0, 1]), 0, "C"),
            (qml.CRY(3.14, wires=[0, 1]), 1, "RY(3.14)"),
            (qml.CRY(3.14, wires=[0, 1]), 0, "C"),
            (qml.CRZ(3.14, wires=[0, 1]), 1, "RZ(3.14)"),
            (qml.CRZ(3.14, wires=[0, 1]), 0, "C"),
            (qml.CRot(3.14, 2.14, 1.14, wires=[0, 1
                                               ]), 1, "Rot(3.14, 2.14, 1.14)"),
            (qml.CRot(3.14, 2.14, 1.14, wires=[0, 1]), 0, "C"),
            (qml.PhaseShift(3.14, wires=[0]), 0, "Rϕ(3.14)"),
            (qml.Beamsplitter(1, 2, wires=[0, 1]), 1, "BS(1, 2)"),
            (qml.Beamsplitter(1, 2, wires=[0, 1]), 0, "BS(1, 2)"),
            (qml.Squeezing(1, 2, wires=[1]), 1, "S(1, 2)"),
            (qml.TwoModeSqueezing(1, 2, wires=[0, 1]), 1, "S(1, 2)"),
            (qml.TwoModeSqueezing(1, 2, wires=[0, 1]), 0, "S(1, 2)"),
            (qml.Displacement(1, 2, wires=[1]), 1, "D(1, 2)"),
            (qml.NumberOperator(wires=[1]), 1, "n"),
            (qml.Rotation(3.14, wires=[1]), 1, "R(3.14)"),
            (qml.ControlledAddition(3.14, wires=[0, 1]), 1, "X(3.14)"),
            (qml.ControlledAddition(3.14, wires=[0, 1]), 0, "C"),
            (qml.ControlledPhase(3.14, wires=[0, 1]), 1, "Z(3.14)"),
            (qml.ControlledPhase(3.14, wires=[0, 1]), 0, "C"),
            (qml.ThermalState(3, wires=[1]), 1, "Thermal(3)"),
            (
                qml.GaussianState(np.array([[2, 0], [0, 2]]),
                                  np.array([1, 2]),
                                  wires=[1]),
                1,
                "Gaussian(M0,M1)",
            ),
            (qml.QuadraticPhase(3.14, wires=[1]), 1, "P(3.14)"),
            (qml.RX(3.14, wires=[1]), 1, "RX(3.14)"),
            (qml.S(wires=[2]), 2, "S"),
            (qml.T(wires=[2]), 2, "T"),
            (qml.RX(3.14, wires=[1]), 1, "RX(3.14)"),
            (qml.RY(3.14, wires=[1]), 1, "RY(3.14)"),
            (qml.RZ(3.14, wires=[1]), 1, "RZ(3.14)"),
            (qml.Rot(3.14, 2.14, 1.14, wires=[1]), 1, "Rot(3.14, 2.14, 1.14)"),
            (qml.U1(3.14, wires=[1]), 1, "U1(3.14)"),
            (qml.U2(3.14, 2.14, wires=[1]), 1, "U2(3.14, 2.14)"),
            (qml.U3(3.14, 2.14, 1.14, wires=[1]), 1, "U3(3.14, 2.14, 1.14)"),
            (qml.BasisState(np.array([0, 1, 0]), wires=[1, 2, 3]), 1, "|0⟩"),
            (qml.BasisState(np.array([0, 1, 0]), wires=[1, 2, 3]), 2, "|1⟩"),
            (qml.BasisState(np.array([0, 1, 0]), wires=[1, 2, 3]), 3, "|0⟩"),
            (qml.QubitStateVector(np.array([0, 1, 0, 0]),
                                  wires=[1, 2]), 1, "QubitStateVector(M0)"),
            (qml.QubitStateVector(np.array([0, 1, 0, 0]),
                                  wires=[1, 2]), 2, "QubitStateVector(M0)"),
            (qml.QubitUnitary(np.eye(2), wires=[1]), 1, "U0"),
            (qml.QubitUnitary(np.eye(4), wires=[1, 2]), 2, "U0"),
            (qml.Kerr(3.14, wires=[1]), 1, "Kerr(3.14)"),
            (qml.CrossKerr(3.14, wires=[1, 2]), 1, "CrossKerr(3.14)"),
            (qml.CrossKerr(3.14, wires=[1, 2]), 2, "CrossKerr(3.14)"),
            (qml.CubicPhase(3.14, wires=[1]), 1, "V(3.14)"),
            (qml.InterferometerUnitary(
                np.eye(4), wires=[1, 3]), 1, "InterferometerUnitary(M0)"),
            (qml.InterferometerUnitary(
                np.eye(4), wires=[1, 3]), 3, "InterferometerUnitary(M0)"),
            (qml.CatState(3.14, 2.14, 1,
                          wires=[1]), 1, "CatState(3.14, 2.14, 1)"),
            (qml.CoherentState(3.14, 2.14,
                               wires=[1]), 1, "CoherentState(3.14, 2.14)"),
            (
                qml.FockDensityMatrix(np.kron(np.eye(4), np.eye(4)),
                                      wires=[1, 2]),
                1,
                "FockDensityMatrix(M0)",
            ),
            (
                qml.FockDensityMatrix(np.kron(np.eye(4), np.eye(4)),
                                      wires=[1, 2]),
                2,
                "FockDensityMatrix(M0)",
            ),
            (
                qml.DisplacedSqueezedState(3.14, 2.14, 1.14, 0.14, wires=[1]),
                1,
                "DisplacedSqueezedState(3.14, 2.14, 1.14, 0.14)",
            ),
            (qml.FockState(7, wires=[1]), 1, "|7⟩"),
            (qml.FockStateVector(np.array([4, 5, 7]), wires=[1, 2, 3
                                                             ]), 1, "|4⟩"),
            (qml.FockStateVector(np.array([4, 5, 7]), wires=[1, 2, 3
                                                             ]), 2, "|5⟩"),
            (qml.FockStateVector(np.array([4, 5, 7]), wires=[1, 2, 3
                                                             ]), 3, "|7⟩"),
            (qml.SqueezedState(3.14, 2.14,
                               wires=[1]), 1, "SqueezedState(3.14, 2.14)"),
            (qml.Hermitian(np.eye(4), wires=[1, 2]), 1, "H0"),
            (qml.Hermitian(np.eye(4), wires=[1, 2]), 2, "H0"),
            (qml.X(wires=[1]), 1, "x"),
            (qml.P(wires=[1]), 1, "p"),
            (qml.FockStateProjector(np.array([4, 5, 7]),
                                    wires=[1, 2, 3]), 1, "|4,5,7╳4,5,7|"),
            (
                qml.PolyXP(np.array([1, 2, 0, -1.3, 6]), wires=[1]),
                2,
                "1+2x₀-1.3x₁+6p₁",
            ),
            (
                qml.PolyXP(np.array([[1.2, 2.3, 4.5], [-1.2, 1.2, -1.5],
                                     [-1.3, 4.5, 2.3]]),
                           wires=[1]),
                1,
                "1.2+1.1x₀+3.2p₀+1.2x₀²+2.3p₀²+3x₀p₀",
            ),
            (
                qml.PolyXP(
                    np.array([
                        [1.2, 2.3, 4.5, 0, 0],
                        [-1.2, 1.2, -1.5, 0, 0],
                        [-1.3, 4.5, 2.3, 0, 0],
                        [0, 2.6, 0, 0, 0],
                        [0, 0, 0, -4.7, -1.0],
                    ]),
                    wires=[1],
                ),
                1,
                "1.2+1.1x₀+3.2p₀+1.2x₀²+2.3p₀²+3x₀p₀+2.6x₀x₁-p₁²-4.7x₁p₁",
            ),
            (qml.QuadOperator(3.14, wires=[1]), 1, "cos(3.14)x+sin(3.14)p"),
            (qml.PauliX(wires=[1]).inv(), 1, "X⁻¹"),
            (qml.CNOT(wires=[0, 1]).inv(), 1, "X⁻¹"),
            (qml.CNOT(wires=[0, 1]).inv(), 0, "C"),
            (qml.Toffoli(wires=[0, 2, 1]).inv(), 1, "X⁻¹"),
            (qml.Toffoli(wires=[0, 2, 1]).inv(), 0, "C"),
            (qml.Toffoli(wires=[0, 2, 1]).inv(), 2, "C"),
            (qml.measure.sample(wires=[0, 1]), 0,
             "basis"),  # not providing an observable in
            (qml.measure.sample(wires=[0, 1]), 1,
             "basis"),  # sample gets displayed as raw
            (two_wire_quantum_tape(), 0, "QuantumTape:T0"),
            (two_wire_quantum_tape(), 1, "QuantumTape:T0"),
        ],
    )
    def test_operator_representation_unicode(self,
                                             unicode_representation_resolver,
                                             op, wire, target):
        """Test that an Operator instance is properly resolved."""
        assert unicode_representation_resolver.operator_representation(
            op, wire) == target

    @pytest.mark.parametrize(
        "op,wire,target",
        [
            (qml.PauliX(wires=[1]), 1, "X"),
            (qml.CNOT(wires=[0, 1]), 1, "X"),
            (qml.CNOT(wires=[0, 1]), 0, "C"),
            (qml.Toffoli(wires=[0, 2, 1]), 1, "X"),
            (qml.Toffoli(wires=[0, 2, 1]), 0, "C"),
            (qml.Toffoli(wires=[0, 2, 1]), 2, "C"),
            (qml.CSWAP(wires=[0, 2, 1]), 1, "SWAP"),
            (qml.CSWAP(wires=[0, 2, 1]), 2, "SWAP"),
            (qml.CSWAP(wires=[0, 2, 1]), 0, "C"),
            (qml.PauliY(wires=[1]), 1, "Y"),
            (qml.PauliZ(wires=[1]), 1, "Z"),
            (qml.CZ(wires=[0, 1]), 1, "Z"),
            (qml.CZ(wires=[0, 1]), 0, "C"),
            (qml.Identity(wires=[1]), 1, "I"),
            (qml.Hadamard(wires=[1]), 1, "H"),
            (qml.CRX(3.14, wires=[0, 1]), 1, "RX(3.14)"),
            (qml.CRX(3.14, wires=[0, 1]), 0, "C"),
            (qml.CRY(3.14, wires=[0, 1]), 1, "RY(3.14)"),
            (qml.CRY(3.14, wires=[0, 1]), 0, "C"),
            (qml.CRZ(3.14, wires=[0, 1]), 1, "RZ(3.14)"),
            (qml.CRZ(3.14, wires=[0, 1]), 0, "C"),
            (qml.CRot(3.14, 2.14, 1.14, wires=[0, 1
                                               ]), 1, "Rot(3.14, 2.14, 1.14)"),
            (qml.CRot(3.14, 2.14, 1.14, wires=[0, 1]), 0, "C"),
            (qml.PhaseShift(3.14, wires=[0]), 0, "Rϕ(3.14)"),
            (qml.Beamsplitter(1, 2, wires=[0, 1]), 1, "BS(1, 2)"),
            (qml.Beamsplitter(1, 2, wires=[0, 1]), 0, "BS(1, 2)"),
            (qml.Squeezing(1, 2, wires=[1]), 1, "S(1, 2)"),
            (qml.TwoModeSqueezing(1, 2, wires=[0, 1]), 1, "S(1, 2)"),
            (qml.TwoModeSqueezing(1, 2, wires=[0, 1]), 0, "S(1, 2)"),
            (qml.Displacement(1, 2, wires=[1]), 1, "D(1, 2)"),
            (qml.NumberOperator(wires=[1]), 1, "n"),
            (qml.Rotation(3.14, wires=[1]), 1, "R(3.14)"),
            (qml.ControlledAddition(3.14, wires=[0, 1]), 1, "X(3.14)"),
            (qml.ControlledAddition(3.14, wires=[0, 1]), 0, "C"),
            (qml.ControlledPhase(3.14, wires=[0, 1]), 1, "Z(3.14)"),
            (qml.ControlledPhase(3.14, wires=[0, 1]), 0, "C"),
            (qml.ThermalState(3, wires=[1]), 1, "Thermal(3)"),
            (
                qml.GaussianState(np.array([[2, 0], [0, 2]]),
                                  np.array([1, 2]),
                                  wires=[1]),
                1,
                "Gaussian(M0,M1)",
            ),
            (qml.QuadraticPhase(3.14, wires=[1]), 1, "P(3.14)"),
            (qml.RX(3.14, wires=[1]), 1, "RX(3.14)"),
            (qml.S(wires=[2]), 2, "S"),
            (qml.T(wires=[2]), 2, "T"),
            (qml.RX(3.14, wires=[1]), 1, "RX(3.14)"),
            (qml.RY(3.14, wires=[1]), 1, "RY(3.14)"),
            (qml.RZ(3.14, wires=[1]), 1, "RZ(3.14)"),
            (qml.Rot(3.14, 2.14, 1.14, wires=[1]), 1, "Rot(3.14, 2.14, 1.14)"),
            (qml.U1(3.14, wires=[1]), 1, "U1(3.14)"),
            (qml.U2(3.14, 2.14, wires=[1]), 1, "U2(3.14, 2.14)"),
            (qml.U3(3.14, 2.14, 1.14, wires=[1]), 1, "U3(3.14, 2.14, 1.14)"),
            (qml.BasisState(np.array([0, 1, 0]), wires=[1, 2, 3]), 1, "|0>"),
            (qml.BasisState(np.array([0, 1, 0]), wires=[1, 2, 3]), 2, "|1>"),
            (qml.BasisState(np.array([0, 1, 0]), wires=[1, 2, 3]), 3, "|0>"),
            (qml.QubitStateVector(np.array([0, 1, 0, 0]),
                                  wires=[1, 2]), 1, "QubitStateVector(M0)"),
            (qml.QubitStateVector(np.array([0, 1, 0, 0]),
                                  wires=[1, 2]), 2, "QubitStateVector(M0)"),
            (qml.QubitUnitary(np.eye(2), wires=[1]), 1, "U0"),
            (qml.QubitUnitary(np.eye(4), wires=[1, 2]), 2, "U0"),
            (qml.Kerr(3.14, wires=[1]), 1, "Kerr(3.14)"),
            (qml.CrossKerr(3.14, wires=[1, 2]), 1, "CrossKerr(3.14)"),
            (qml.CrossKerr(3.14, wires=[1, 2]), 2, "CrossKerr(3.14)"),
            (qml.CubicPhase(3.14, wires=[1]), 1, "V(3.14)"),
            (qml.InterferometerUnitary(
                np.eye(4), wires=[1, 3]), 1, "InterferometerUnitary(M0)"),
            (qml.InterferometerUnitary(
                np.eye(4), wires=[1, 3]), 3, "InterferometerUnitary(M0)"),
            (qml.CatState(3.14, 2.14, 1,
                          wires=[1]), 1, "CatState(3.14, 2.14, 1)"),
            (qml.CoherentState(3.14, 2.14,
                               wires=[1]), 1, "CoherentState(3.14, 2.14)"),
            (
                qml.FockDensityMatrix(np.kron(np.eye(4), np.eye(4)),
                                      wires=[1, 2]),
                1,
                "FockDensityMatrix(M0)",
            ),
            (
                qml.FockDensityMatrix(np.kron(np.eye(4), np.eye(4)),
                                      wires=[1, 2]),
                2,
                "FockDensityMatrix(M0)",
            ),
            (
                qml.DisplacedSqueezedState(3.14, 2.14, 1.14, 0.14, wires=[1]),
                1,
                "DisplacedSqueezedState(3.14, 2.14, 1.14, 0.14)",
            ),
            (qml.FockState(7, wires=[1]), 1, "|7>"),
            (qml.FockStateVector(np.array([4, 5, 7]), wires=[1, 2, 3
                                                             ]), 1, "|4>"),
            (qml.FockStateVector(np.array([4, 5, 7]), wires=[1, 2, 3
                                                             ]), 2, "|5>"),
            (qml.FockStateVector(np.array([4, 5, 7]), wires=[1, 2, 3
                                                             ]), 3, "|7>"),
            (qml.SqueezedState(3.14, 2.14,
                               wires=[1]), 1, "SqueezedState(3.14, 2.14)"),
            (qml.Hermitian(np.eye(4), wires=[1, 2]), 1, "H0"),
            (qml.Hermitian(np.eye(4), wires=[1, 2]), 2, "H0"),
            (qml.X(wires=[1]), 1, "x"),
            (qml.P(wires=[1]), 1, "p"),
            (qml.FockStateProjector(np.array([4, 5, 7]),
                                    wires=[1, 2, 3]), 1, "|4,5,7X4,5,7|"),
            (
                qml.PolyXP(np.array([1, 2, 0, -1.3, 6]), wires=[1]),
                2,
                "1+2x_0-1.3x_1+6p_1",
            ),
            (
                qml.PolyXP(np.array([[1.2, 2.3, 4.5], [-1.2, 1.2, -1.5],
                                     [-1.3, 4.5, 2.3]]),
                           wires=[1]),
                1,
                "1.2+1.1x_0+3.2p_0+1.2x_0^2+2.3p_0^2+3x_0p_0",
            ),
            (
                qml.PolyXP(
                    np.array([
                        [1.2, 2.3, 4.5, 0, 0],
                        [-1.2, 1.2, -1.5, 0, 0],
                        [-1.3, 4.5, 2.3, 0, 0],
                        [0, 2.6, 0, 0, 0],
                        [0, 0, 0, -4.7, 0],
                    ]),
                    wires=[1],
                ),
                1,
                "1.2+1.1x_0+3.2p_0+1.2x_0^2+2.3p_0^2+3x_0p_0+2.6x_0x_1-4.7x_1p_1",
            ),
            (qml.QuadOperator(3.14, wires=[1]), 1, "cos(3.14)x+sin(3.14)p"),
            (qml.QuadOperator(3.14, wires=[1]), 1, "cos(3.14)x+sin(3.14)p"),
            (qml.PauliX(wires=[1]).inv(), 1, "X^-1"),
            (qml.CNOT(wires=[0, 1]).inv(), 1, "X^-1"),
            (qml.CNOT(wires=[0, 1]).inv(), 0, "C"),
            (qml.Toffoli(wires=[0, 2, 1]).inv(), 1, "X^-1"),
            (qml.Toffoli(wires=[0, 2, 1]).inv(), 0, "C"),
            (qml.Toffoli(wires=[0, 2, 1]).inv(), 2, "C"),
            (qml.measure.sample(wires=[0, 1]), 0,
             "basis"),  # not providing an observable in
            (qml.measure.sample(wires=[0, 1]), 1,
             "basis"),  # sample gets displayed as raw
            (two_wire_quantum_tape(), 0, "QuantumTape:T0"),
            (two_wire_quantum_tape(), 1, "QuantumTape:T0"),
        ],
    )
    def test_operator_representation_ascii(self, ascii_representation_resolver,
                                           op, wire, target):
        """Test that an Operator instance is properly resolved."""
        assert ascii_representation_resolver.operator_representation(
            op, wire) == target

    @pytest.mark.parametrize(
        "obs,wire,target",
        [
            (qml.expval(qml.PauliX(wires=[1])), 1, "⟨X⟩"),
            (qml.expval(qml.PauliY(wires=[1])), 1, "⟨Y⟩"),
            (qml.expval(qml.PauliZ(wires=[1])), 1, "⟨Z⟩"),
            (qml.expval(qml.Hadamard(wires=[1])), 1, "⟨H⟩"),
            (qml.expval(qml.Hermitian(np.eye(4), wires=[1, 2])), 1, "⟨H0⟩"),
            (qml.expval(qml.Hermitian(np.eye(4), wires=[1, 2])), 2, "⟨H0⟩"),
            (qml.expval(qml.NumberOperator(wires=[1])), 1, "⟨n⟩"),
            (qml.expval(qml.X(wires=[1])), 1, "⟨x⟩"),
            (qml.expval(qml.P(wires=[1])), 1, "⟨p⟩"),
            (
                qml.expval(
                    qml.FockStateProjector(np.array([4, 5, 7]),
                                           wires=[1, 2, 3])),
                1,
                "⟨|4,5,7╳4,5,7|⟩",
            ),
            (
                qml.expval(qml.PolyXP(np.array([1, 2, 0, -1.3, 6]), wires=[1
                                                                           ])),
                2,
                "⟨1+2x₀-1.3x₁+6p₁⟩",
            ),
            (
                qml.expval(
                    qml.PolyXP(np.array([[1.2, 2.3, 4.5], [-1.2, 1.2, -1.5],
                                         [-1.3, 4.5, 2.3]]),
                               wires=[1])),
                1,
                "⟨1.2+1.1x₀+3.2p₀+1.2x₀²+2.3p₀²+3x₀p₀⟩",
            ),
            (qml.expval(qml.QuadOperator(
                3.14, wires=[1])), 1, "⟨cos(3.14)x+sin(3.14)p⟩"),
            (qml.var(qml.PauliX(wires=[1])), 1, "Var[X]"),
            (qml.var(qml.PauliY(wires=[1])), 1, "Var[Y]"),
            (qml.var(qml.PauliZ(wires=[1])), 1, "Var[Z]"),
            (qml.var(qml.Hadamard(wires=[1])), 1, "Var[H]"),
            (qml.var(qml.Hermitian(np.eye(4), wires=[1, 2])), 1, "Var[H0]"),
            (qml.var(qml.Hermitian(np.eye(4), wires=[1, 2])), 2, "Var[H0]"),
            (qml.var(qml.NumberOperator(wires=[1])), 1, "Var[n]"),
            (qml.var(qml.X(wires=[1])), 1, "Var[x]"),
            (qml.var(qml.P(wires=[1])), 1, "Var[p]"),
            (
                qml.var(
                    qml.FockStateProjector(np.array([4, 5, 7]),
                                           wires=[1, 2, 3])),
                1,
                "Var[|4,5,7╳4,5,7|]",
            ),
            (
                qml.var(qml.PolyXP(np.array([1, 2, 0, -1.3, 6]), wires=[1])),
                2,
                "Var[1+2x₀-1.3x₁+6p₁]",
            ),
            (
                qml.var(
                    qml.PolyXP(np.array([[1.2, 2.3, 4.5], [-1.2, 1.2, -1.5],
                                         [-1.3, 4.5, 2.3]]),
                               wires=[1])),
                1,
                "Var[1.2+1.1x₀+3.2p₀+1.2x₀²+2.3p₀²+3x₀p₀]",
            ),
            (qml.var(qml.QuadOperator(
                3.14, wires=[1])), 1, "Var[cos(3.14)x+sin(3.14)p]"),
            (qml.sample(qml.PauliX(wires=[1])), 1, "Sample[X]"),
            (qml.sample(qml.PauliY(wires=[1])), 1, "Sample[Y]"),
            (qml.sample(qml.PauliZ(wires=[1])), 1, "Sample[Z]"),
            (qml.sample(qml.Hadamard(wires=[1])), 1, "Sample[H]"),
            (qml.sample(qml.Hermitian(np.eye(4), wires=[1, 2
                                                        ])), 1, "Sample[H0]"),
            (qml.sample(qml.Hermitian(np.eye(4), wires=[1, 2
                                                        ])), 2, "Sample[H0]"),
            (qml.sample(qml.NumberOperator(wires=[1])), 1, "Sample[n]"),
            (qml.sample(qml.X(wires=[1])), 1, "Sample[x]"),
            (qml.sample(qml.P(wires=[1])), 1, "Sample[p]"),
            (
                qml.sample(
                    qml.FockStateProjector(np.array([4, 5, 7]),
                                           wires=[1, 2, 3])),
                1,
                "Sample[|4,5,7╳4,5,7|]",
            ),
            (
                qml.sample(qml.PolyXP(np.array([1, 2, 0, -1.3, 6]), wires=[1
                                                                           ])),
                2,
                "Sample[1+2x₀-1.3x₁+6p₁]",
            ),
            (
                qml.sample(
                    qml.PolyXP(np.array([[1.2, 2.3, 4.5], [-1.2, 1.2, -1.5],
                                         [-1.3, 4.5, 2.3]]),
                               wires=[1])),
                1,
                "Sample[1.2+1.1x₀+3.2p₀+1.2x₀²+2.3p₀²+3x₀p₀]",
            ),
            (qml.sample(qml.QuadOperator(
                3.14, wires=[1])), 1, "Sample[cos(3.14)x+sin(3.14)p]"),
            (
                qml.expval(
                    qml.PauliX(wires=[1]) @ qml.PauliY(wires=[2])
                    @ qml.PauliZ(wires=[3])),
                1,
                "⟨X ⊗ Y ⊗ Z⟩",
            ),
            (
                qml.expval(
                    qml.FockStateProjector(np.array([4, 5, 7]),
                                           wires=[1, 2, 3])
                    @ qml.X(wires=[4])),
                1,
                "⟨|4,5,7╳4,5,7| ⊗ x⟩",
            ),
            (
                qml.expval(
                    qml.FockStateProjector(np.array([4, 5, 7]),
                                           wires=[1, 2, 3])
                    @ qml.X(wires=[4])),
                2,
                "⟨|4,5,7╳4,5,7| ⊗ x⟩",
            ),
            (
                qml.expval(
                    qml.FockStateProjector(np.array([4, 5, 7]),
                                           wires=[1, 2, 3])
                    @ qml.X(wires=[4])),
                3,
                "⟨|4,5,7╳4,5,7| ⊗ x⟩",
            ),
            (
                qml.expval(
                    qml.FockStateProjector(np.array([4, 5, 7]),
                                           wires=[1, 2, 3])
                    @ qml.X(wires=[4])),
                4,
                "⟨|4,5,7╳4,5,7| ⊗ x⟩",
            ),
            (
                qml.sample(
                    qml.Hermitian(np.eye(4), wires=[1, 2]) @ qml.Hermitian(
                        np.eye(4), wires=[0, 3])),
                0,
                "Sample[H0 ⊗ H0]",
            ),
            (
                qml.sample(
                    qml.Hermitian(np.eye(4), wires=[1, 2]) @ qml.Hermitian(
                        2 * np.eye(4), wires=[0, 3])),
                0,
                "Sample[H0 ⊗ H1]",
            ),
            (qml.probs([0]), 0, "Probs"),
            (state(), 0, "State"),
        ],
    )
    def test_output_representation_unicode(self,
                                           unicode_representation_resolver,
                                           obs, wire, target):
        """Test that an Observable instance with return type is properly resolved."""
        assert unicode_representation_resolver.output_representation(
            obs, wire) == target

    def test_fallback_output_representation_unicode(
            self, unicode_representation_resolver):
        """Test that an Observable instance with return type is properly resolved."""
        obs = qml.PauliZ(0)
        obs.return_type = "TestReturnType"

        assert unicode_representation_resolver.output_representation(
            obs, 0) == "TestReturnType[Z]"

    @pytest.mark.parametrize(
        "obs,wire,target",
        [
            (qml.expval(qml.PauliX(wires=[1])), 1, "<X>"),
            (qml.expval(qml.PauliY(wires=[1])), 1, "<Y>"),
            (qml.expval(qml.PauliZ(wires=[1])), 1, "<Z>"),
            (qml.expval(qml.Hadamard(wires=[1])), 1, "<H>"),
            (qml.expval(qml.Hermitian(np.eye(4), wires=[1, 2])), 1, "<H0>"),
            (qml.expval(qml.Hermitian(np.eye(4), wires=[1, 2])), 2, "<H0>"),
            (qml.expval(qml.NumberOperator(wires=[1])), 1, "<n>"),
            (qml.expval(qml.X(wires=[1])), 1, "<x>"),
            (qml.expval(qml.P(wires=[1])), 1, "<p>"),
            (
                qml.expval(
                    qml.FockStateProjector(np.array([4, 5, 7]),
                                           wires=[1, 2, 3])),
                1,
                "<|4,5,7X4,5,7|>",
            ),
            (
                qml.expval(qml.PolyXP(np.array([1, 2, 0, -1.3, 6]), wires=[1
                                                                           ])),
                2,
                "<1+2x_0-1.3x_1+6p_1>",
            ),
            (
                qml.expval(
                    qml.PolyXP(np.array([[1.2, 2.3, 4.5], [-1.2, 1.2, -1.5],
                                         [-1.3, 4.5, 2.3]]),
                               wires=[1])),
                1,
                "<1.2+1.1x_0+3.2p_0+1.2x_0^2+2.3p_0^2+3x_0p_0>",
            ),
            (qml.expval(qml.QuadOperator(
                3.14, wires=[1])), 1, "<cos(3.14)x+sin(3.14)p>"),
            (qml.var(qml.PauliX(wires=[1])), 1, "Var[X]"),
            (qml.var(qml.PauliY(wires=[1])), 1, "Var[Y]"),
            (qml.var(qml.PauliZ(wires=[1])), 1, "Var[Z]"),
            (qml.var(qml.Hadamard(wires=[1])), 1, "Var[H]"),
            (qml.var(qml.Hermitian(np.eye(4), wires=[1, 2])), 1, "Var[H0]"),
            (qml.var(qml.Hermitian(np.eye(4), wires=[1, 2])), 2, "Var[H0]"),
            (qml.var(qml.NumberOperator(wires=[1])), 1, "Var[n]"),
            (qml.var(qml.X(wires=[1])), 1, "Var[x]"),
            (qml.var(qml.P(wires=[1])), 1, "Var[p]"),
            (
                qml.var(
                    qml.FockStateProjector(np.array([4, 5, 7]),
                                           wires=[1, 2, 3])),
                1,
                "Var[|4,5,7X4,5,7|]",
            ),
            (
                qml.var(qml.PolyXP(np.array([1, 2, 0, -1.3, 6]), wires=[1])),
                2,
                "Var[1+2x_0-1.3x_1+6p_1]",
            ),
            (
                qml.var(
                    qml.PolyXP(np.array([[1.2, 2.3, 4.5], [-1.2, 1.2, -1.5],
                                         [-1.3, 4.5, 2.3]]),
                               wires=[1])),
                1,
                "Var[1.2+1.1x_0+3.2p_0+1.2x_0^2+2.3p_0^2+3x_0p_0]",
            ),
            (qml.var(qml.QuadOperator(
                3.14, wires=[1])), 1, "Var[cos(3.14)x+sin(3.14)p]"),
            (qml.sample(qml.PauliX(wires=[1])), 1, "Sample[X]"),
            (qml.sample(qml.PauliY(wires=[1])), 1, "Sample[Y]"),
            (qml.sample(qml.PauliZ(wires=[1])), 1, "Sample[Z]"),
            (qml.sample(qml.Hadamard(wires=[1])), 1, "Sample[H]"),
            (qml.sample(qml.Hermitian(np.eye(4), wires=[1, 2
                                                        ])), 1, "Sample[H0]"),
            (qml.sample(qml.Hermitian(np.eye(4), wires=[1, 2
                                                        ])), 2, "Sample[H0]"),
            (qml.sample(qml.NumberOperator(wires=[1])), 1, "Sample[n]"),
            (qml.sample(qml.X(wires=[1])), 1, "Sample[x]"),
            (qml.sample(qml.P(wires=[1])), 1, "Sample[p]"),
            (
                qml.sample(
                    qml.FockStateProjector(np.array([4, 5, 7]),
                                           wires=[1, 2, 3])),
                1,
                "Sample[|4,5,7X4,5,7|]",
            ),
            (
                qml.sample(qml.PolyXP(np.array([1, 2, 0, -1.3, 6]), wires=[1
                                                                           ])),
                2,
                "Sample[1+2x_0-1.3x_1+6p_1]",
            ),
            (
                qml.sample(
                    qml.PolyXP(np.array([[1.2, 2.3, 4.5], [-1.2, 1.2, -1.5],
                                         [-1.3, 4.5, 2.3]]),
                               wires=[1])),
                1,
                "Sample[1.2+1.1x_0+3.2p_0+1.2x_0^2+2.3p_0^2+3x_0p_0]",
            ),
            (qml.sample(qml.QuadOperator(
                3.14, wires=[1])), 1, "Sample[cos(3.14)x+sin(3.14)p]"),
            (
                qml.expval(
                    qml.PauliX(wires=[1]) @ qml.PauliY(wires=[2])
                    @ qml.PauliZ(wires=[3])),
                1,
                "<X @ Y @ Z>",
            ),
            (
                qml.expval(
                    qml.FockStateProjector(np.array([4, 5, 7]),
                                           wires=[1, 2, 3])
                    @ qml.X(wires=[4])),
                1,
                "<|4,5,7X4,5,7| @ x>",
            ),
            (
                qml.expval(
                    qml.FockStateProjector(np.array([4, 5, 7]),
                                           wires=[1, 2, 3])
                    @ qml.X(wires=[4])),
                2,
                "<|4,5,7X4,5,7| @ x>",
            ),
            (
                qml.expval(
                    qml.FockStateProjector(np.array([4, 5, 7]),
                                           wires=[1, 2, 3])
                    @ qml.X(wires=[4])),
                3,
                "<|4,5,7X4,5,7| @ x>",
            ),
            (
                qml.expval(
                    qml.FockStateProjector(np.array([4, 5, 7]),
                                           wires=[1, 2, 3])
                    @ qml.X(wires=[4])),
                4,
                "<|4,5,7X4,5,7| @ x>",
            ),
            (
                qml.sample(
                    qml.Hermitian(np.eye(4), wires=[1, 2]) @ qml.Hermitian(
                        np.eye(4), wires=[0, 3])),
                0,
                "Sample[H0 @ H0]",
            ),
            (
                qml.sample(
                    qml.Hermitian(np.eye(4), wires=[1, 2]) @ qml.Hermitian(
                        2 * np.eye(4), wires=[0, 3])),
                0,
                "Sample[H0 @ H1]",
            ),
            (qml.probs([0]), 0, "Probs"),
            (state(), 0, "State"),
        ],
    )
    def test_output_representation_ascii(self, ascii_representation_resolver,
                                         obs, wire, target):
        """Test that an Observable instance with return type is properly resolved."""
        assert ascii_representation_resolver.output_representation(
            obs, wire) == target

    def test_element_representation_none(self,
                                         unicode_representation_resolver):
        """Test that element_representation properly handles None."""
        assert unicode_representation_resolver.element_representation(None,
                                                                      0) == ""

    def test_element_representation_str(self, unicode_representation_resolver):
        """Test that element_representation properly handles strings."""
        assert unicode_representation_resolver.element_representation(
            "Test", 0) == "Test"

    def test_element_representation_calls_output(
            self, unicode_representation_resolver):
        """Test that element_representation calls output_representation for returned observables."""

        unicode_representation_resolver.output_representation = Mock()

        obs = qml.sample(qml.PauliX(3))
        wire = 3

        unicode_representation_resolver.element_representation(obs, wire)

        assert unicode_representation_resolver.output_representation.call_args[
            0] == (obs, wire)

    def test_element_representation_calls_operator(
            self, unicode_representation_resolver):
        """Test that element_representation calls operator_representation for all operators that are not returned."""

        unicode_representation_resolver.operator_representation = Mock()

        op = qml.PauliX(3)
        wire = 3

        unicode_representation_resolver.element_representation(op, wire)

        assert unicode_representation_resolver.operator_representation.call_args[
            0] == (op, wire)
Пример #14
0
        def circuit(theta):
            qml.Hadamard(0)
            qml.MultiRZ(theta, wires=[0, 1])

            return qml.expval(qml.PauliX(0))
Пример #15
0
 def circuit(param):
     qml.MultiRZ(param, wires=[0, 1])
     return qml.probs(wires=list(range(wires)))
Пример #16
0
# Some useful global variables

# gates for which device support is tested
ops = {
    "BasisState": qml.BasisState(np.array([0]), wires=[0]),
    "CNOT": qml.CNOT(wires=[0, 1]),
    "CRX": qml.CRX(0, wires=[0, 1]),
    "CRY": qml.CRY(0, wires=[0, 1]),
    "CRZ": qml.CRZ(0, wires=[0, 1]),
    "CRot": qml.CRot(0, 0, 0, wires=[0, 1]),
    "CSWAP": qml.CSWAP(wires=[0, 1, 2]),
    "CZ": qml.CZ(wires=[0, 1]),
    "CY": qml.CY(wires=[0, 1]),
    "DiagonalQubitUnitary": qml.DiagonalQubitUnitary(np.array([1, 1]), wires=[0]),
    "Hadamard": qml.Hadamard(wires=[0]),
    "MultiRZ": qml.MultiRZ(0, wires=[0]),
    "PauliX": qml.PauliX(wires=[0]),
    "PauliY": qml.PauliY(wires=[0]),
    "PauliZ": qml.PauliZ(wires=[0]),
    "PhaseShift": qml.PhaseShift(0, wires=[0]),
    "ControlledPhaseShift": qml.ControlledPhaseShift(0, wires=[0, 1]),
    "QubitStateVector": qml.QubitStateVector(np.array([1.0, 0.0]), wires=[0]),
    "QubitUnitary": qml.QubitUnitary(np.eye(2), wires=[0]),
    "ControlledQubitUnitary": qml.ControlledQubitUnitary(np.eye(2), control_wires=[1], wires=[0]),
    "MultiControlledX": qml.MultiControlledX(control_wires=[1, 2], wires=[0]),
    "RX": qml.RX(0, wires=[0]),
    "RY": qml.RY(0, wires=[0]),
    "RZ": qml.RZ(0, wires=[0]),
    "Rot": qml.Rot(0, 0, 0, wires=[0]),
    "S": qml.S(wires=[0]),
    "SWAP": qml.SWAP(wires=[0, 1]),
Пример #17
0
        qml.Hadamard(wires=0)
    ],
    [
        qml.CNOT(wires=[3, 1]),
        qml.Hadamard(wires=1),
        qml.PauliY(wires=2),
        qml.Hadamard(wires=0),
        qml.CNOT(wires=[3, 1]),
        qml.Hadamard(wires=1),
        qml.PauliY(wires=2),
        qml.Hadamard(wires=[0]),
    ],
    [
        qml.RX(0.5, wires=0),
        qml.RX(0.5, wires=1),
        qml.MultiRZ(0.3, wires=[0, 1])
    ],
    [
        qml.RY(0.5, wires=0),
        qml.RY(0.4, wires=1),
        qml.templates.BasicEntanglerLayers([[0.5, 0.4]], wires=[0, 1]),
        qml.RY(0.5, wires=0),
        qml.RY(0.4, wires=1),
        qml.templates.BasicEntanglerLayers([[0.5, 0.4]], wires=[0, 1]),
    ],
]

ARGS = [
    [],
    [],
    [],
Пример #18
0
 def circuit(a, b):
     qml.RX(a, wires=0)
     qml.MultiRZ(b, wires=[0, 1, 2])
     return qml.expval(qml.PauliX(0))
Пример #19
0
def DynamicCircuit(parameters):

    for i in range(2):
        qml.RX(parameters[0][i], wires=i)

    qml.MultiRZ(parameters[1], wires=[0, 1])